

·30⁻³

lic

th

BCS RODLESS SCREW DRIVE ACTUATORS ENDURANCE TECHNOLOGY

CONTENTS
DOC Fastures

	DU3_Z
Critical Speed Capacities	BCS_4
Specifications	BCS_6
Support Recommendations	BCS_8
BCS10 Dimensions	BCS_10
BCS15 Dimensions	BCS_12
BCS20 Dimensions	BCS_14
Switches	BCS_16
Application Data Worksheet	BCS_18
Selection Guidelines	BCS_19
Ordering	BCS_20

DO0 0

A Tolomatic Design Principle

LINEAR SOLUTIONS MADE EASY

BCS RODLESS SCREW DRIVE ACTUATORS

ENDURANCE TECHNOLOGY A Tolomatic Design Principle

This rodless style actuator is designed for carrying light to moderate loads at an economical price. Based upon our BC2 pneumatic band cylinder, it utilizes a guidance system consisting of an adjustable carrier bracket with two solid bearing rods that transmit the load to the actuator body for superior load support. Built-to-order in stroke lengths up to 3 m [120 inches] with multiple screw options available.

ADJUSTABLE CARRIER BRACKET

- •Allows for easy adjustment and replacement of the load bearings throughout the life of the actuator
- •Allows customizing the bearing tension and free play of the carrier to meet the applications requirements

FORMED END CAP WIPERS

Prevent contaminants from entering the sealing band area to protect internal components

LOAD-BEARING CARRIER DESIGN

- Engineered resin bearings provide guidance, low friction loss and long life
- •Load and moments are transmitted directly to the actuator body

SCREW SUPPORT BEARINGS

High thrust bearing assembly design isolates the motor from axial forces

MULTIPLE SCREW TECHNOLOGIES

YOU CAN CHOOSE:

- Solid nuts of engineered resins offer quiet performance at the lowest cost: anti-backlash available
- Ball nuts offer positioning accuracy and repeatability with longer life; lowbacklash available

TOLOMATIC...LINEAR SOLUTIONS MADE EASY

EXTERNAL BUMPERS

Bumpers protect the screw and nut assembly from damage at end of stroke

STAINLESS STEEL SEALING BAND

•Prevents contaminants from entering the screw and nut area for prolonged life

• Fatigue resistant stainless steel bands are specifically made to offer long life and will not elongate

LIGHTWEIGHT ALUMINUM DESIGN

- •Black anodized extrusion design is optimized for rigidity and strength
- •External switch channels on both sides allow easy placement and adjustment of position indicating switches

MOTOR ORIENTATION

YOU CAN CHOOSE:

- Inline option directly couples the driving shafts and is a one-piece housing construction for optimum alignment and support of the motor
- Reverse-parallel option minimizes the overall length and offers a 1:1 or 2:1 belt ratio

YOUR MOTOR HERE

YOU CAN CHOOSE:

- Motor or gearbox supplied and installed by Tolomatic
- Specify the device to be installed and actuator ships with proper mounting hardware
- Specify and ship your device to Tolomatic for factory installation LMI (inline) motor mount only

OPTIONS

CARRIER OPTIONS AUXILIARY CARRIER doubles the load

capacity and increases bending moments capacity significantly

MOUNTING OPTIONS

SURFACE MOUNT tapped holes are provided on the underside of the actuator heads, as a standard feature, for direct mounting

TUBE SUPPORTS provide intermediate support of the actuator body throughout long stroke lengths

METRIC OPTION

Provides metric tapped holes for mounting of load to carrier and of actuator to mating surfaces

Styles include: reed, hall-effect or triac. Select either 5 m potted cable with flying leads or 150 mm to guick-disconnect coupler with mating 5 m cable.

[□] FLOATING MOUNT compensates for nonparallelism between the actuator and an external support or guidance system

ACME SCREW/NUT COMBINATIONS

ACME SCREW CRITICAL SPEED CAPACITIES

* Maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation.

Dotted lines represent maximum stroke for screw selections.

For Screw PV limits, refer to the individual charts located in the technical section for each actuator body size.

BALL SCREW/NUT COMBINATIONS

BALL SCREW CRITICAL SPEED CAPACITIES

* Maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

Dotted lines represent maximum stroke for screw selections.

Refer to the technical section for each actuator body size for details on life calculations for individual screws.

BCS Rodless Screw Drive Actuators

BALL SCREW SPECIFICATIONS

PV LIMITS: Any material which carries a sliding load is limited by heat buildup. The factors that affect heat generation rate in an application are the pressure on the nut in pounds per square inch and the surface velocity in feet per minute. The product of these factors provides a measure of the severity of an application.

Tolomatic

BCS 6

Thrust

(Max. Thrust Rating)

Speed

(Max. Speed Rating)

Х

≤ 0.1

SPECIFICATIONS

SPECIFICATIONS RELATED TO ACTUATOR SIZE AND SCREW SELECTION

US CONVENTIONAL LEAD SCREWS											
ΛΟΤΙΙΛΤΟΡ	SCREW DIA.		TPI	LEAD	BACKLASH	MAXIMUM	MAXIMUM		NERTIA (Ib-in ⁴	2)	BREAKAWAY
SFRIES		TYPF		ACCURACY		THRUST*	STROKE	BASE A	CTUATOR	PER/in	TUKUUE
0EniE0	(in)		(turns/in)	(in/ft)	(in)	(lb)	(in)	In Line	Rev. Parallel	OF STROKE	(lb-in)
	0.375	BN	08	0.004	0.015	130	61	0.0046	0.0054	0.0005	1.000
	0.375	BNL	08	0.004	0.002	130	61	0.0046	0.0054	0.0005	1.000
DCC10	0.500	SN	01	0.006	0.007	170	85	0.0321	0.0348	0.0017	1.857
D0310	0.500	SN	02	0.005	0.007	170	120	0.0190	0.0217	0.0017	1.563
	0.500	SNA	02	0.005	0.003	170	120	0.0190	0.0217	0.0017	1.563
	0.500	SN	05	0.006	0.007	170	120	0.0153	0.0180	0.0017	1.125
	0.500	BN	02	0.003	0.015	800	59	0.0299	0.0327	0.0017	1.375
	0.500	BNL	02	0.003	0.002	800	59	0.0299	0.0327	0.0017	1.375
BCG15	0.625	BN	05	0.003	0.015	800	59	0.0455	0.0524	0.0042	1.188
00313	0.625	BNL	05	0.003	0.002	800	59	0.0455	0.0524	0.0042	1.188
	0.625	SN	02	0.005	0.007	200	120	0.0558	0.0627	0.0042	1.563
	0.750	SN	01	0.005	0.007	300	120	0.1391	0.1536	0.0087	2.188
	0.750	BN	02	0.004	0.015	2700	120	0.1241	0.1374	0.0087	1.750
BCS20	0.750	BNL	02	0.004	0.002	2700	120	0.1241	0.1374	0.0087	1.750
00320	0.750	BN	05	0.003	0.015	950	120	0.1091	0.1224	0.0087	1.563
	0.750	BNL	05	0.003	0.002	950	120	0.1091	0.1224	0.0087	1.563

METRIC LEAD SCREW

	SCREW DIA.	000551//	LEAD	LEAD	BACKLASH	MAXIMUM	MAXIMUM	INERTIA (kg-m ² x		10 ⁻⁶)	BREAKAWAY
ACTUATOR		SCREW		ACCURACY		THRUST*	STROKE			DED/mm	TUKUUE
SERIES	(mm)	TYPE	(mm /tum)	(mm/200)	(mm)	/ N D	(mm)	DAJE A	GIUAIUN		(N-m)
	(mm)		(mm/turn)	(mm/300)	(mm)	(N)	(mm)	In Line	Rev. Parallel	UF SIKUKE	(11-11)
	10	BN	3.2	0.13	0.38	578	1549	31.94	37.50	3.472	0.11
BCS10	10	BNL	3.2	0.13	0.05	578	1549	31.94	67.50	3.472	0.11
	12	SN	12	0.13	0.18	800	3048	4.53	5.18	0.410	0.20
	15	SN	12	0.13	0.18	900	3048	13.22	14.83	0.966	0.27
BCS15	16	BN	5	0.13	0.38	7300	1499	13.69	15.77	1.258	0.16
	16	BNL	5	0.13	0.05	7300	1499	13.69	15.77	1.258	0.16
BCC20	20	BN	5	0.13	0.38	11700	3048	38.61	43.32	3.102	0.25
00320	20	BNL	5	0.13	0.05	11700	3048	38.61	43.32	3.102	0.25

SCREW CODE	DESCRIPTION
BN	Ball Nut
BNL	Low-Backlash Ball Nut
SN	Solid Nut
SNA	Anti-backlash Solid Nut

Contact Tolomatic for higher accuracy and lower backlash options. * For Acme screws, maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation.

For ball screws, maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

sizeit.tolomatic.com for fast, accurate actuator selection

SPECIFICATIONS

GENERAL ACTUATOR SPECIFICATIONS

METRIC ACTUATORS								
ACTUATOR SERIES CARRIER WEIGHT (kg) BASE WEIGHT (kg) (including Carrier) WEIGHT PER/IN OF STROKE (g) TEMPERATURE RANGE (C°) IP RATING								
BCS10	0.31	1.32	3.1	4 - 54	44			
BCS15	0.88	2.90	7.0	4 - 54	44			
BCS20	1.27	6.62	11.9	4 - 54	44			

US CONVENTIONAL ACTUATORS							
ACTUATOR Series	Carrier Weight (Ib)	BASE WEIGHT (lb) (Including Carrier)	WEIGHT PER/IN Of Stroke (Ib)	TEMPERATURE Range (F°)	IP RATING**		
BCS10	0.69	2.91	0.176	40 - 130	44		
BCS15	1.94	6.61	0.392	40 - 130	44		
BCS20	2.81	14.59	0.666	40 - 130	44		

BCS CARRIER BRACKET BOLT ADJUSTMENT (ALL SIZES)

BCS carrier bracket adjustment bolts should be adjusted to suit each individual application, depending on the degree of rigidity required. A good starting point is to tighten the nut on the bolt until there is no lateral movement of the bolt. Then,

equally tighten each nut on the carrier bolt while moving the carrier by hand along the length of the stroke. When all lateral play in the carrier is eliminated and free movement along the length of the stroke is maintained, your carrier bracket is adjusted properly. Some applications may require fine tuning of this adjustment to gain more lateral play or a higher degree of rigidity. In demanding applications, carrier adjustments should be done periodically.

* CAUTION: Over-tightening increases drive torque of motor and drive.

Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact Tolomatic.

Protected against ingress of solid particles greater than 1mm (.039 in) and splashing water

LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported, if subjected to continuous rapid reversing duty and/or under dynamic conditions.

FRICTION FORCE

SUPPORT RECOMMENDATIONS

DYNAMIC BENDING MOMENTS AND LOADS

	MAXIMUM BENDING MOM	METRIC			US CONVENTIONAL			
STANDARD CARRIER			BCS10	BCS15	BCS20	BCS10	BCS15	BCS20
Fz	Mx Moment (Roll)	(N-m : lb-in)	6.2	31.1	33.9	55	275	300
My Mz	My Moment (Pitch)	(N-m : lb-in)	11.3	56.5	124.3	100	500	1100
MX Z	Mz Moment (Yaw)	(N-m : lb-in)	3.4	22.6	36.7	30	200	325
	Fz Moment (Lateral)	(N : Ib)	267	801	1335	60	180	300
AUXILIARY CARRIER: Increases rigidity, lo	oad-carrying capacity and r	noments	BCS10	BCS15	BCS20	BCS10	BCS15	BCS20
Fz ‡	Mx Moment (Roll)	*(N-m : lb-in)	12.4	62.1	67.8	110	550	600
My	My Moment (Pitch)	*(<mark>N-m</mark> : lb-in)	32.4	164.1	274.6	287	1453	2430
	Mz Moment (Yaw)	*(<mark>N-m</mark> : lb-in)	32.4	164.1	274.6	287	1453	2430
	Fz Moment (Lateral)	(N : lb)	534	1602	2670	120	360	600
	Minimum Dimension 'D'	(mm : in)	129.5	165.0	206.0	5.10	6.50	8.10

Please see BCS Carrier Bracket Bolt Adjustment on page BCS_6

Breakaway torque will increase when using the Auxiliary carrier option. When ordering, determine your working stroke and enter this value into the configuration string. Overall actuator length will automatically be calculated. *Loads shown in table are at minimum "D" dimension, for ratings with longer "D" dimension see graph below.

AUXILIARY CARRIER: BENDING MOMENT AT 'D' DISTANCE

Rates shown on charts were calculated with these assumptions:

1.) Coupling between carriers is rigid.

2.) Load is equally distributed between carriers.

3.) Coupling device applies no misalignment loads to carriers. * Customer must specify Dimension "D" (Distance between carrier

 Customer must specify Dimension "D" (Distance between carr center lines) in configuration string.

DIMENSIONS

всs_10

DIMENSIONS

BCS10: IN-LINE MOUNT FOR MOTORS OR GEARHEADS

BCS10: REVERSE PARALLEL MOUNTING

BOTTOM MOUNT

SIDE MOUNT (Right Shown)

TOP MOUNT

SPECIFICATIONS

	WEI RED D	GHT OF Uction Rive	RED INE Moto	UCTION RTIA AT Dr shaft
	1:1	2:1	1:1	2:1
	kg	kg	kg-cm	r^2 kg-cm ²
NEMA 23 Frame	0.9344	4 0.9344	0.204	3 0.2767
	WEI REDI DI	GHT OF Jction Rive	RED INE Moto	UCTION RTIA AT DR SHAFT
	1:1	2:1	1:1	2:1
	lbs	lbs	lb-in ²	lb-in ²

2.06

0.070

0.095

REDUCTION EFFICIENCY: 0.95

2.06

DIMENSIONS

NEM/ 23 Frame

	Α	В	C	D	F	G		*H	J	К	L
	тт	тт	тт	mm	тт	mm	Size	тт	тт	тт	mm
8							21	120.7			
A 2	26.6	176 7	510	026	15.0	16 5	22	146.1	20 1	16 5	<u> </u>
E	30.0	170.7	54.0	02.0	40.9	40.0	23	171.5	39.1	40.0	20.2
z-							24	196.9			
	Α	В	C	D	F	G		*H	J	K	L
	in.	in.	in.	in.	in.	in.	Size	in.	in.	in.	in.
8							21	4.75			
A 2	- 11	6.06	0 10	2.05	1 01	1 00	22	5.75	4 5 4	1 00	4 4 4
E E	1.44	0.90	2.13	3.20	1.01	1.03	23	6.75	1.34	1.03	
			1			1	0.4	7 75	1		

*H: Typical Motor Length

DIMENSIONS

Unless otherwise noted, all dimensions shown are in inches (Dimensions in parenthesis are in millimeters)

DIMENSIONS

dimensions and specifications, refer to literature #3600-4161

BCS15: REVERSE PARALLEL MOUNTING

SPECIFICATIONS

	WEIG REDU DR	HT OF Ction Ive	REDUCTION INERTIA AT MOTOR SHAFT			
	1:1 2:1		1:1	2:1		
	kg	kg	kg-cm ²	kg-cm ²		
NEMA 23 Frame	0.9843	1.0886	0.2043	0.2767		
NEMA 34 Frame	1.1839	1.2882	0.2043	0.2767		

	WEI RED D	GHT OF Uction Rive	RED INE Moto	UCTION RTIA AT Dr Shaft
	1:1	2:1	1:1	2:1
	lbs	lbs	lb-in ²	lb-in ²
NEMA 23 Frame	2.17	2.40	0.070	0.095
NEMA 34 Frame	2.61	2.84	0.070	0.095

REDUCTION EFFICIENCY: 0.95

	Α	B	C	D	F	G		H*	J	K	L		Α	В	C	D	F	G		H*	J	K	L
	тт	mm	mm	mm	mm	mm	Size	тт	тт	mm	тт		in.	in.	in.	in.	in.	in.	Size	in.	in.	in.	in.
EMA 23 ⁻ rame							21	120.7	42.4 47.2	47.2	25.3	e				3.25		1.05	21	4.75	1.67	1.00	0.00
	2000	100 4	F10	00.0	100	47.0	22	146.1				A 2 me		7 40	0 10		1.70		22	5.75			
	30.0	189.4	34.0	82.0	43.2		23	171.5				Fra	1.44	1.40	2.13			1.85	23	6.75	1.07	1.80	0.98
z-							24	196.9			z-							24	7.75				
NEMA 34 Frame	53.8						31	155.2		30.7	8.9	е 34							31	6.11			
		206.6	60.3	101.6	26.7	30.7	32	186.9	25.9			MA	2.12	8.14	2.38	4.00	1.05	1.21	32	7.36	1.02	1.21	0.33
							33	218.7				E E							33	8.61			

Tolomatic

DIMENSIONS

Unless otherwise noted, all dimensions shown are in inches (Dimensions in parenthesis are in millimeters)

REDUCTION

INERTIA AT

MOTOR SHAFT

2:1

lb-in²

0.100

0.100

1:1

lb-in²

0.118

0.118

J Κ

tolomatic.com/CAD Download 3D CAD Always use CAD solid model to determine critical dimensions DIMENSIONS **BCS20: IN-LINE MOUNT FOR MOTORS AND GEARHEADS** MOTORS KEY For gearhead A + MRV3x, MRB3x dimensions and x, GHJ20x, GHJ21> x, GHJ31x, GHK30 Č, specifications, refer to \bigcirc -Ø.640 (16.2) n literature #3600-4161 0.89 (22.6) MRS2 MRS3 MRB3. A,D + 3.75 (95.2) B,C + 3.00 (76.2) Ø .187 (4.7) x 0.89 (22.6) DP [2] 3.010 (76.4) **NOTE: MRB & MRV** motors are Ø 3.39 (86.1) ø discontinued contact A,D ⇒ 3.75 15 (95.2) B.C + 3.00 **Tolomatic for** A,D → Ø 1.63 (41.4) B,C → Ø 1.50 (38.1) information on YMH (76.2) (Your Motor Here) ø A,D ≠ Ø 2.879 (73.1) x 0.15 (3.81) DP B,C ≠ Ø 1.504 (38.2) Ø .221 (5.6) THRU [4] EQ SPACED ON 0.38 (9.6) Ø #10-24 x 0.75 (19.1) DP (4) EQ SPACED ON BOLT CIRCLE Ø 3.010 (76.4) BOLT CIRCLE 1 56 x 0.15 (3.81) DP A + Ø 3.875 (98.4) B,C + Ø 2.625 (66.6) (39.6) A,C + 2.50 (63.5) D ≠ Ø 4.596 (116.7) B + 2.75 (69.8) D + 3.28 (83.8) E + 2.50 (63.5) F + 2.06 (52.3) **BCS20: REVERSE PARALLEL MOUNTING BOTTOM MOUNT** TOP MOUNT \bigcirc 0 Α G F C 0 0 B D -C-Н **SPECIFICATIONS** SIDE MOUNT (Right Shown) WEIGHT OF REDUCTION WEIGHT OF REDUCTION REDUCTION **INERTIA AT** DRIVE **MOTOR SHAFT** DRIVE K 1:1 2:1 1:1 2:1 1:1 2:1 Jŧ kg-cm² kg-cm² lbs lbs kg kg A A NEMA 23 Frame NEMA 23 Frame 1.41 3.27 o⊚o 1.48 0.3447 0.2928 3.11 ο 0 NEMA 34 Frame rame 34 EMP 1.44 1.51 0.3447 0.2928 3.18 3.34 0 6 **REDUCTION EFFICIENCY: 0.95** Ď DIMENSIONS R C D C D F H* Α н В G G . in in in in Size in in in in in. mm mm mm mm mm Size mm NEMA 23 Frame

000 5	00.0			0 00 5	21	120.7				e							21	4.75			1 00
		101 0	01.0		22	2 146.1 3 171.5 57.2 65.0 34.9 X Bu 3 171.5 57.2 65.0 34.9 X Bu 4.00 2.44	65.0	34.9 Z M	A 2 me	1 1 1	0.21	0.00	1 00	0 4 4	0.50	22	5.75	0.05	0.50		
230.5	60.3	101.0	61.8	63.5	23				9.51 2.3	4.00	2.44	2.50	2.50	23	6.75	2.20	2.50	1.38			
					24	196.9				z-							24	7.75			
					31	155.2		48.8	8.8 18.5	MA 34 ame	1.96	9.83	2.38	4.00	1.79	1.86	31	6.11	1.61	1.92	0.73
249.6	60.3	101.6	45.5	47.2	32	186.9	40.9										32	7.36			
					33	218.7				۳Ē							33	8.61			
	236.5 249.6	236.5 60.3 249.6 60.3	236.5 60.3 101.6 249.6 60.3 101.6	236.5 60.3 101.6 61.8 249.6 60.3 101.6 45.5	236.5 60.3 101.6 61.8 63.5 249.6 60.3 101.6 45.5 47.2	236.5 60.3 101.6 61.8 63.5 21 249.6 60.3 101.6 45.5 47.2 32 31 32 32 33 31 32 33	236.5 60.3 101.6 61.8 61.8 61.8 61.8 61.8 61.8 61.8 6	236.5 60.3 101.6 61.8 63.5 21 120.7 22 146.1 23 171.5 24 196.9 249.6 60.3 101.6 45.5 47.2 32 186.9 40.9 33 218.7 20.7 22 146.1 23 171.5 24 196.9	236.5 60.3 101.6 61.8 63.5 21 120.7 22 146.1 23 77.2 65.0 249.6 60.3 101.6 45.5 47.2 32 186.9 40.9 48.8 33 218.7 21.0 20.7 22 146.1 23 40.9 48.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 236.5 \\ 236.5 \\ 40.3 \\ 249.6 \\ 60.3 \\ 101.6 \\ 45.5 \\ 101.6 \\ 45.5 \\ 45.5 \\ 45.5 \\ 47.2 \\ 32 \\ 47.2 \\ 32 \\ 33 \\ 218.7 \\ \end{array} \begin{array}{c} 21 \\ 120.7 \\ 22 \\ 146.1 \\ 23 \\ 171.5 \\ 24 \\ 196.9 \\ 40.9 \\ 40.9 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 236.5 \\ 249.6 \\ 60.3 \\ 101.6 \\ 60.3 \\ 101.6 \\ 45.5 \\ 101.6 \\ 45.5 \\ 101.6 \\ 45.5 \\ 47.2 \\ 101.6 \\ 45.5 \\ 47.2 \\ 101.6 \\ 45.5 \\ 47.2 \\ 101.6 \\ $	$ \begin{array}{c} 236.5 \\ 236.5 \\ 249.6 \\ 249.6 \\ 260.3 \\ 101.6 \\ 101.6 \\ 45.5 \\ 101.6 \\ 45.5 \\ 45.5 \\ 45.5 \\ 47.2 \\ 32 \\ 47.2 \\ 32 \\ 32 \\ 186.9 \\ 33 \\ 218.7 \\ \end{array} \begin{array}{c} 21 \\ 120.7 \\ 22 \\ 146.1 \\ 57.2 \\ 65.0 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 18.5 \\ 48.8 \\ 4$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

*H: Typical Motor Length

34 NEMA 3⁴ Frame

SWITCHES

There are 10 sensing choices: DC reed, form A (open) or form C (open or closed); AC reed (Triac, open); Hall-effect, sourcing, PNP (open); Hall-effect, sinking, NPN (open); each with either flying leads or QD (quick disconnect). Commonly used to send analog signals to PLC (programmable logic controllers), TLL, CMOS circuit or other controller device. These switches are activated by the actuator's magnet.

Switches contain reverse polarity protection. QD cables are shielded; shield should be terminated at flying lead end.

If necessary to remove factory installed switches, be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet.

SPECIFICATIONS

		REE	D DC		REE	D AC	HALL-EFFECT DC				
ORDER CODE	RT	RM	BT	BM	CT	CM	H	ΤM	ΚT	KM	
LEAD	5m	QD*	5m	QD*	5m	QD*	5m	QD*	5m	QD*	
CABLE SHIELDING	Unshielded	Shielded†	Unshielded	Shielded+	Unshielded	Shielded+	Unshielded	Shielded+	Unshielded	Shielded+	
SWITCHING LOGIC	"A" Norm	a ll y Open	"C" Norma ll y (Open or C l osed	Triac Norn	na ll y Open	PNP (Sourcing) Normally Open NPN (Sinking) Norma			Norma ll y Open	
MECHANICAL CONTACTS	Single-Pole	Sing l e-Throw	Single-Pole [Double-Throw	Single-Pole S	Sing l e-Throw	NO,	These Are Solid	d State Compon	ents	
COIL DIRECT	Y	es	Y	es	Ye	es	_				
POWER LED	None		No	no	No	no	None		None		
SIGNAL LED	Red Troil-o-manic			лю	NULLE		Red •	TOL-O-MATIC	Red 🖭	rol-o-matic	
OPERATING VOLTAGE	200 Vo	lc max.	120 Vo	lc max.	120 Va	ic max.	5 - 25 Vdc				
OUTPUT RATING		-				—		25 Vdc, 200mA dc			
OPERATING TIME	0.6 ms (including	ec max. 3 bounce)	0.7 ms (including	ec max. g bounce)	_	_	< 10 micro sec.				
OPERATING TEMPERATURE			-40°F [-40°C] 1	to 158°F [70°C]			0°F [-18°C] to 150°F [66°C]				
RELEASE TIME		1.0 ms	ec. max.			-					
ON TRIP POINT		-				_	150 Gauss maximum				
OFF TRIP POINT		-				-	40 Gauss minimum				
**POWER RATING (WATTS)	10	0 §	3.0) § §	10	0.0	5.0				
VOLTAGE DROP	2.6 V typica	at 100 mA	NA		_						
RESISTANCE		0.1 Ω Ini	tial (Max.)								
CURRENT CONSUMPTION		—				0.5 Amp at 140°F [60°C]	200 mA at 25 Vdc				
FREQUENCY		-	_		47 - 63 Hz —			_			
CABLE MIN. STATIC					0.630"	[16mm]					
RADIUS DYNAMIC					Not Recommended						

A CAUTION: DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING!

** WARNING: Do not exceed power rating (Watt = Voltage X Amperage). Permanent damage to sensor will occur.

*QD = Quick Disconnect; Male coupler is located 6" [152mm] from sensor,

Female coupler to flying lead distance is 197" [5m] also see Cable Shielding specification above

REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1, 1997: It will be necessary to replace or rewire the female end coupler.

Reed Switch Life Expectancy: Up to 200,000,000 cycles (depending on load current, duty cycle and environmental conditions)

[†]Shielded from the female quick disconnect coupler to the flying leads. Shield should be terminated at flying lead end.

§ Maximum current 500mA (not to exceed 10VA) Refer to Temperature vs. Current graph and Voltage Derating graph

BCS Rodless Screw Drive Actuator

PERFORMANCE

BT & BM DC REED, FORM C

TT & TM HALL-EFFECT, SOURCING, PNP

K	T & KM H	IALL-EFFECT, SINKING, NPN
Γ	Hall-Effect Sinking Switch	

AC

сом

LOAD

INPUT

VOLTAGE DERATING, DC REED VOLTAGE A.C. or D.C.J 0 05 01 02 05 EROFORM C REED FORM A ₀∟ 100 200 300 400 500 CURRENT D.C (mA)

INSTALLATION INFORMATION

A THE NOTCHED FACE OF THE SWITCH INDICATES THE SENSING SURFACE AND MUST FACE TOWARD THE MAGNET.

actuator s

INFORMATION Name, Phone, Email Co. Name, Etc.

SELECTION GUIDELINES

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic Distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only.

CHOOSE ACTUATOR SIZE

Choose an actuator that has the thrust, speed and moment load capacity to move the load. Use the Critical Speed graphs (page BCS_4-5) for the screw and the Moment and Load Capacity table (pg. BCS_9) for the actuator.

2COMPARE LOAD TO MAXIMUM LOAD CAPACITIES

Calculate the application load (combination of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated. its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at the end of the stroke is required for extended actuator performance and application safety. If either load or any of your moments exceed figures indicated in the Moment and Load Capacity table (pg. BCS_9) for the actuator consider:

- 1) Higher capacity bearing style
- 2) A larger actuator size
- 3) Auxiliary carrier
- 4) External guide system

BCALCULATE LOAD FACTOR LF

For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1.

 $L_{F} = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1$

If LF does exceed the value of 1, consider the four choices listed in step #2.

4 ESTABLISH YOUR MOTION PROFILE AND CALCULATE ACCELERATION RATE

Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accel-constant speeddecel) profile. Now calculate the maximum acceleration and deceleration rates of the move. Speed should not exceed critical speed value as shown on graphs (page BCS_4-5) for the screw/nut combination cho-

SPEED FACTOR

FOR APPLICATIONS WITH HIGH SPEED OR SIGNIFICANT SHOCK AND VIBRATION: Calculated values of loads and bending moments must be increased by speed factor from the graph below to obtain full rated life of profiled rail bearing system.

sen. Also, do not exceed safe rates of dynamic inertia moments determined in step #3.

5 SELECT THE LEAD

Based on the application requirements for accuracy, backlash, quiet operation, life, etc. select the appropriate lead screw type (Acme screw with a solid nut or ball screw with a standard or antibacklash nut) and the pitch (lead). For additional information on screw selection, consult "Which Screw? Picking the Right Technology" (#9900-4644) available at www.tolomatic.com.

SELECT MOTOR (GEARHEAD IF NECESSARY) AND DRIVE

To help select a motor and drive, use the sizing equations located in the Engineering Resources section [ENGR] to calculate the application thrust and torque requirements. Refer to Motor sections [MRV] & [MRS] to determine the motor and drive.

DETERMINE TUBE SUPPORT/ MOUNTING PLATE REQUIREMENTS

- Consult the Support Recommendations graph for the model selected (page BCS_8)
- Cross reference the application load and maximum distance between supports
- Select the appropriate number of tube supports, and mounting plates if required for motor and adapter clearance.

BCONSIDER OPTIONS

- Choose metric or inch (US conventional) load mounting.
- Switches Reed, Solid State PNP or NPN, all available normally open or normally closed
- FL Floating mount bracket - used when lack of parallelism occurs between the actuator and an externally guided and supported load

For applications using **BCIS** actuator, binding or interrupted motion may occur if the load offset is equal to or greater than twice the bearing length (1X).

LOAD OFFSET is defined as: the distance from the applied force (or the load center of gravity) to the centerline of the carrier.

If the load offset cannot be changed consider:

- 1.) Higher capacity bearing style
- 2.) Larger Bore Cylinder
- 3.) Auxiliary Carrier
- 4.) Add External Guides

BCS Rodless Screw Drive Actuators

ORDERING

B

fasteners will be either inch or metric;

depending on how stroke length is indicated.

SK = inch mounting

† The metric version provides metric tapped holes for mounting of the load to the carrier and of the

actuator to mounting surfaces

SM = metric mounting

BASE	MODEL SPE	FICATIONS	OPTIONS SP	ECIFICATIO) N S
BCS 20	BN02S	K 4 5 R P L	$1 DC 1 \\ 8$	KT2	MP2
				L	
MODE	EL TYPE	MOTOR MO	DUNTING / REDUCTIONS		SWITCHES
BCS BCS Series US	Conventional Screw Drive	(must cho	ose one)	RM	_ Reed Switch (Form A) with 5-meter
		LMI In-Line	e mounting	DT	lead/QD (quick-disconnect), & quantity
	176	LME23 Ext. sh	haft for RP & 23 frame motor	ni_	lead, and quantity desired
5		LME34 Ext. sh	haft for RP & 34 frame motor	BM	_ Reed Switch (Form C) with 5-meter
10,	15, 20	**LMX Extend	Jed shaft - old style (see note)		lead/QD, and quantity desired
		extended mot	tor shafts purchased prior	RI RI	_ Reed Switch (Form C) with 5-meter
NUT/SCREW (CONFIGURATIO <u>n</u>	to 6/24/02 us	e LMX	КМ	Hall-effect Sinking Switch with 5-meter
	METDIO	A motor si	ize and code must be selected		lead/QD, and quantity desired
(US Conventional)	METRIC MODELS+	A when spec	cifying a reverse-parallel	KT_	_ Hall-effect Sinking Switch with 5-meter
		mounting	configuration.	тм	lead, and quantity desired
PITCH (turn/in)	LEAD (mm/turn)		everse-Parallel mount left		5-meter lead/QD, and quantity desired
SN01	SN12	PDR1 1.1 R	everse-Parallel mount hottom	Π	Hall-effect Sourcing Switch with
SN02		RPT1 1.1 R	everse-Parallel mount ton		5-meter lead, and quantity desired
SNA02		RPL2 2:1 B	everse-Parallel mount left	CM	_ IRIAC SWITCH WITH 5-METER IEAD/QD, and quantity desired
		RPR2 2:1 Re	everse-Parallel mount right	СТ	TRIAC Switch with 5-meter lead, and
Ball NUT / PITCH (turn/in)	LEAD (turn/in)	RPB2 2:1 Re	everse-Parallel mount bottom		quantity desired
BN02		RPT2 2:1 Re	everse-Parallel mount top		
BNL02					
BN05	BN05	0117/1		SU	PPORTS AND MOUNTING PLATES
BNL05	BNL05	AUXI	LIARY CARRIER	(be	oth may be selected)
BNI 08	BNL08	DC Auxiliary	y Carrier, then center-to-center	TS	_ Tube Supports plus quantity desired
	DIALOO	spacing	desired in in inches (SK) or	MP	2 Mounting Plates, 2 in kit
The metric version p	rovides metric tapped holes	millimet	.ers (SM).		
for mounting of the lo	oad to the carrier and of the	(Same unit of me	Pasure as stroke length is required)		FLOATING MOUNT
	50110005	adds to overall	length of the actuator, this	FL	Floating Mount Bracket
STROKE LENGT	H & MOUNTING TYPE	distance will no	t be subtracted from stroke		
SK . Str	roke enter desired stroke	length specified	i in the previous step.		
ler	ngth in inches				
SM† Str	roke, enter desired stroke			LU	B _ Grease, Food/Drug
ler	ngth in millimeters	NOTE: Brakes n	nounted on reverse narallel m	notor mounts (esr	necially in vertically positioned actuators) will pr
UIE: Actuator mou	inung inreads and mounting		nountou on reverse paraller n		bolany in voluouily positionou dotadtors) will ne

NOTE: Brakes mounted on reverse parallel motor mounts (especially in vertically positioned actuators) will not prevent back driving of the screw and the load falling under gravity in the event of a timing belt failure. An inline motor mount with a fail-safe brake mounted directly to the actuator shaft or a special geared or thru-shaft reverse parallel construction should be considered if a brake is required in a safety critical application. Contact Tolomatic for alternate reverse parallel brake mounting options.

Gearheads may be used with reverse parallel motor mounts. However, the torque on the belt and internal RP components must remain below the capabilities of the assembly to prevent belt slipping or premature failure. Contact Tolomatic for additional information if required.

Use the Sizing Software to determine available options and accessories based on your application requirements.

	FIELD RETROFIT KITS														
ITEM	BCS10_SK	BCS15_SK	BCS20_SK	BCS10_SM	BCS15_SM	BCS20_SM									
Tube Supports	4510-1010	4515-1010	4520-1010	4510-1010	4515-1010	4520-1010									
Mounting Plates	0910-9133	0915-9135	0920-9038	0510-9105	0515-9138	0520-9105									

The Tolomatic Difference Expect More From the Industry Leader:

Electric Linear Actuators

Power Transmission Products

COMPANY WITH QUALITY SYSTEM **CERTIFIED BY DNV** = ISO 9001 = Certified site: Hamel, MN

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.