

Damping Technology

ACE: Your partner for industrial shock absorbers, gas springs and vibration control

Main Catalog 2018 North America

Complete Product Range
Data Sheets & Catalogs
CAD Database
Free Calculation Programs
Distributors
Services
News
etc.

www.acecontrols.com

Preface

Dear customer,

You have made the right decision.

You will find over 280 pages of comprehensive information on the application fields of automation control (single direction of movement, i.e. deceleration), motion control (bidirectional movement, i.e. gas springs and dampers), vibration control and safety products. Each section is marked with a different color. This integrated concept is reflected in all documentation and on our www. acecontrols.com website. We also offer an ACE YouTube channel, extensive CAD library and calculation aids.

Innovations can as usual be found in the table of contents and on the individual catalogue pages.

ACE products assist you in making your production and processes faster, more efficient, quieter, easier, safer and more sustainable – underpinned by ACE product quality and our 5-star service.

Yours,

Jürgen Roland (Managing Director)

Free Application & Engineering Support

Tell us about your requirements and take advantage of our more than 50 years of expert knowledge in damping technology. Our specialists in engineering discuss your requirements with you and demonstrate our capabilities. Take advantage of our service hotline:

1-800-521-3320

Our regional managers are genuine product specialists. They will visit you onsite and work out customized solutions for you.

ACE service support and products are available in more than 40 countries worldwide.

Online Calculation Program & CAD Database

With our user-friendly calculation program, you can select the right product — online or via download. The CAD data is available in all standard formats in 2D and 3D.

www.acecontrols.com

Our specialist engineers create detailed technical solutions for you including assembly suggestions and details on machine loads, brake time and workload etc.

Automation Control

Motion Control

Vibration Control

Safety Products

Certified Quality

ACE products are exclusively manufactured from high quality and environmentally friendly materials. With constant quality monitoring and performance testing, we guarantee the highest quality products.

ACE pursues continual improvement throughout the production process in order to reduce material and energy consumption, the production of damaging substances and works to recycle or dispose of end products as gently as possible. It is important to us to keep the strain on the environment as low as possible and simultaneously improve our services.

With ongoing optimization of our products, we strive to provide our customers with well designed products which are smaller, more effective and energy saving.

Miniature Shock Absorbers, Industrial Shock Absorbers, Heavy Industrial Shock Absorbers, Profile Dampers, Damping Pads

Industrial Gas Springs (push type), Industrial Gas Springs (pull type), Hydraulic Dampers, Hydraulic Feed Controls, Rotary Dampers

Rubber-Metal Isolators, Vibration-Isolating Pads, Low Frequency Pneumatic Leveling Mounts

Safety Shock Absorbers, Safety Dampers, Clamping Elements

We are your Specialists for Industrial Damping Technology

ACE is the world's globally recognized specialist in the field of industrial damping technology — with agencies in 45 countries on all continents. ACE was founded in Farmington Hills, Michigan in 1962.

ACE customers benefit from sophisticated solutions, valuable innovations and exemplary service around the topic of damping technology. Through close cooperation with leading engineering companies, ACE has established itself as a pioneer in the field of technical progress in damping technology.

This catalog is our attempt to provide a comprehensive service, including all the information you need to find solutions to your damping technology and vibration isolation challenges.

ACE develops, produces and sells a wide range of damping products. It comprises industrial and safety shock absorbers, profile dampers, rotary dampers, industrial gas springs, hydraulic dampers, vibration isolators, air springs and hydraulic feed controls.

Our advanced products are designed and engineered to help foward-thinking companies quickly, gently and precisely slow down moving masses or to isolate harmful vibrations.

Page

6

143

144 - 145

Sample pads

Application examples

Automation Control

8	- 9	Industrial shock absorbers – general information
10	- 13	Formulas and calculations
14	- 15	Industrial shock absorbers – capacity chart
	10	Ministers Charles has about
	16	Miniature Shock absorbers
18	•	Product families
	- 41	Accessories M5 to M25 – selection chart
	- 43	Accessories 3/8-32 UNF to 1-12 UNF – selection chart
44	- 47	Accessories M5 to M25 – overview
48	- 49	Accessories 3/8-32 UNF to 1-12 UNF – overview
50	- 51	Accessories – technical information
52	- 53	Application examples
	54	Industrial Shock Absorbers
56	- 88	Product families
	- 92	Accessories M33 to M64 – overview
	- 95	Accessories 1-1/4-12 UNF to 2-1/2-12 UNF – overview
30	96	Accessories – technical information
07	- 99	
91	- 99	Application examples
	100	Heavy Industrial Shock Absorbers
102	- 109	Product families
110	- 111	Special accessories – air/oil tanks
	112	Profile Dampers — TUBUS
	114	Profile dampers – capacity chart
116	- 127	Product families
128	- 129	Application examples
		··
	130	Special Profile Dampers – TUBUS
	132	Damping Pads — SLAB
134	- 140	Product families
	141	Adhesive recommendation and technical information
	142	Chemical resistance

Issue 04.2018 - Specifications subject to change

Page	
146	Motion Control
148 150 - 171 169 172 - 173	Gas Springs — Push Type Product families Additional stainless steel gas springs — capacity chart Application examples
174 176 - 186 187	Gas Springs — Pull Type Product families Additional stainless steel gas springs — capacity chart
188 - 189 190 191	Gas spring calculation service and fax form Mounting and safety instructions Special accessories – valve actuation and refilling kit
192 194 - 208 210 - 211	Hydraulic Dampers Product families Application examples
212 - 225	Accessories for gas springs and hydraulic dampers
226 228 - 231	Hydraulic Feed Controls Product families
232 236 - 249 250 251	Rotary Dampers Product families Calculations and accessories Application examples
252	Vibration Control
254	Vibration isolation
255	Rubber-Metal Isolators
256	Vibration-Isolating Pads
257	Low Frequency Pneumatic Leveling Mounts
258	Safety Products
260 262 - 273 274 275 276 - 277	Safety Shock Absorbers Product families General instructions Formulas and calculations Application examples

284 - 286

288 - 289

278 280 - 281

282

Safety Dampers – TUBUS

Product families

Clamp versions

Application examples

Clamping Elements

Automation Control

Miniature Shock Absorbers, Industrial Shock Absorbers
Heavy Industrial Shock Absorbers, Profile Dampers
Damping Pads

Optimum Customization

Tailor-made solutions for any application

ACE universal damping solutions convert kinetic energy in to heat. This makes machines faster, quieter, more durable, lighter and therefore more competitive and profitable.

Here you will find the perfect selection of machine elements, which turn damaging forces into harmless heat. These solutions from ACE smoothly decelerate moving loads. This involves the lowest possible stress on machines, which makes the damping products from ACE so valuable.

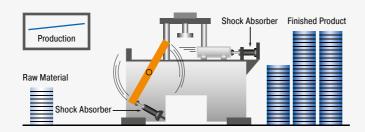
Industrial Shock Absorbers

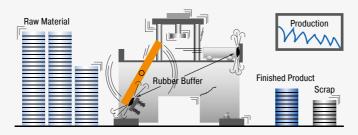
Standard-setting damping solutions

The name says it all. ACE is considered the technology and market leader worldwide for small, medium-sized and heavy industrial shock absorbers is a result of the successful blend of quality, performance and the durability of the solutions.

ACE provides the right shock absorber for every industrial application. Over 200 different models are available, from the smallest model with a 0.16 inch stroke up to the biggest with 16 inches.

Whether self-compensating or adjustable, with ACE dampers between 6 in-lb/cycle and 1,120,000 in-lb/cycle can be absorbed and effective weights between 1.10 lbs and 225 tons can be decelerated with great precision.


In addition, ACE damping solutions impress with knowledgeable consulting, exemplary service and ideal matching accessories.


ACE demo showing a wine glass dropping free fall 0.05 inch.

Decelerated by a shock absorber, not a drop of wine is spilled.

Stopping with Industrial Shock Absorbers

Stopping with Rubber Buffers, Springs, Dashpots or Cylinder Cushions

Advantages of using industrial shock absorbers

- Safe, reliable production
- · Long service life of the machines
- Easy, inexpensive construction
- Low operating costs
- · Quiet, economical machines
- · Less stress on the machine
- Profit improvement

Results using conventional dampers

- Loss of production
- Machine damage
- Increased maintenance costs
- Increased operating noise
- Higher machine construction costs

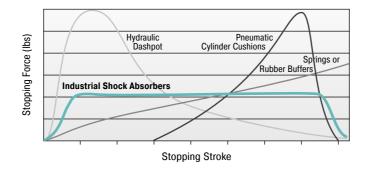
Comparison of Different Damping Elements

When it comes to slowing down moving masses with constant damping force through the stroke, the industrial shock absorber is the right choice. A comparison demonstrates the differences of the damping elements.

ACE Industrial Shock Absorbers (Uniform stopping force through the entire stroke)

The moving load is smoothly and gently brought to rest by a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force in the shortest possible time eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by ACE industrial shock absorbers. In addition they considerably reduce noise pollution.

Hydraulic Dashpot (High stopping force at start of the stroke)

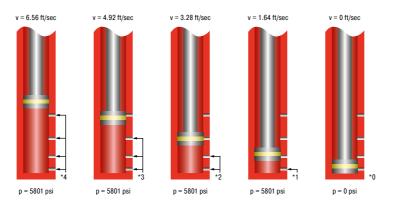

With only one metering orifice the moving load is abruptly slowed down at the start of the stroke. The braking force rises to a very high peak at the start of the stroke (giving high shock loads) and then falls away rapidly.

Springs and Rubber Buffers (High stopping forces at end of stroke)

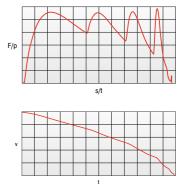
At full compression. Also they store energy rather than dissipating it, causing the load to rebound back again.

Air Buffers, Pneumatic Cylinder Cushions (High stopping force at end of stroke)

Due to the compressibility of air these have a sharply rising force characteristic towards the end of the stroke. The majority of the energy is absorbed near the end of the stroke.



Comparison


The comparison shows the differences of the damping in a direct comparison of stopping force to stopping stroke.

Function of the Pressure Chamber

If a moving mass hits the industrial shock absorber, the piston puts the oil in the pressure chamber into motion. The oil is pressed through the metering orifices, which converts the discharged energy into heat. The metering orifices are arranged on the stroke so that the mass is dulled with a constant damping force. The hydraulic pressure is maintained throughout the entire braking process nearly constant.

* The load velocity reduces continously as you travel through the stroke due to the reduction in the number of metering orifices (*) in action. The internal pressure remains essentially constant and thus the force vs. stroke curve remains linear.

 $\begin{aligned} F &= \text{force (lbs)}, \ p = \text{internal pressure (psi)} \\ s &= \text{stroke (in)}, \ t = \text{deceleration time (s)}, \\ v &= \text{velocity (ft/s)} \end{aligned}$

Issue 04.2018 – Specifications subject to change

Calculation Data for the Designof Industrial Shock Absorbers

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping elements. It is easy to calculate around 90 % of applications knowing only the following five parameters:

1.	Weight to be decelerated (weight)	W	[lbs]
2.	Impact velocity at shock absorber	\mathbf{v}_{D}	[ft/s]
3.	Propelling force	F	[lbs]
4.	Cycles per hour	C	[/hr]
5.	Number of absorbers in parallel	n	

Key t	o symbols used	1			
E ₁	Kinetic energy per cycle	in-lbs	3 ST	Tall torque factor (normally 2.5)	1 to 3
E_2	Propelling force energy per cycle	in-lbs	T	Propelling torque	in-lbs
E_3	Total energy per cycle $(E_1 + E_2)$	in-lbs	1	Moment of Inertia	lb-ft-s2
1 Ĕ ₄	Total energy per hour $(E_3 \cdot c)$	in-lbs/hr	g	Acceleration due to gravity = 9.81	ft/s ²
We	Effective weight	lbs	Ĥ	Drop height excl. shock absorber stroke	in
W	Weight to be decelerated	lbs	s	Shock absorber stroke	in
n	Number of shock absorbers (in parallel)		L/R/r	Radius	in
2 _V	Velocity at impact	ft/s	Q	Reaction force	lbs
$^{2}V_{D}$	Impact velocity at shock absorber	ft/s	μ	Coefficient of friction	
ω	Angular velocity at impact	rad/s	t	Deceleration time	S
F	Propelling force	lbs	a	Deceleration	ft/s ²
С	Cycles per hour	1/hr	α	Side load angle	•
Р	Motor power	hp	β	Angle of incline	۰

¹ All mentioned values of E₄ in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (E₃), (E₄), (We) and the desired shock absorber stroke (s).

Note:

When using several shock absorbers in parallel, the values (E₃), (E₄) and (We) are divided according to the number of units used.

Reaction force Q [lbs]
$$Q = \frac{1.5 \cdot E_3}{s}$$

Stopping time t [s] $t = \frac{2.6 \cdot s}{v_D}$

Deceleration rate a [ft/s²] $a = \frac{9 \cdot v_D^2}{s}$

Approximate values assuming correct adjustment. Add safety margin if necessary. (Exact values will depend upon actual application data and can be provided on request.)

² v or v_D is the final impact velocity of the mass. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

³ ST ≜ relation between starting torque and running torque of the motor (depending on the design)

Formula Example Application Weight without propelling force $E_1 = 0.186 \cdot W \cdot v^2$ W = 500 lbs $E_1 = 0.186 \cdot 500 \cdot 3^2$ 837 in-lb $E_2 = 0 \cdot 1$ $E_2 = F \cdot s$ = 3 ft/s 0 in-lb ٧ $E_3 = 837 + 0$ $\mathsf{E}_3 \ = \mathsf{E}_1 + \mathsf{E}_2$ $F_p = 0$ = 837 in-lb lbs $E_4 = E_3 \cdot c$ = 1 $E_4 = 837 \cdot 500$ S in (chosen) 418500 in-lb/hr We = 837 500 lbs We = E_3 C = 500 /hr $0.186 \cdot v^2$ $0.186 \cdot 3^{2}$ Chosen from capacity chart: Model MC3325-3 self-compensating or MA3325 adjustable $E_1 = 0.186 \cdot 14 \cdot 2.22$ Weight with propelling force $E_1 = 0.186 \cdot W \cdot v^2$ W = 14lb 12.6 in-lb $E_2 = F \cdot s$ $^{1} v = 2.2$ ft/s $\mathsf{E_2} = 30 \cdot 0.4$ 12 in-lb $E_3 = 12.6 + 12$ $\mathsf{E}_3 \ = \mathsf{E}_1 + \mathsf{E}_2$ F = 3024.6 in-lb lbs $E_4 = E_3 \cdot c$ 2460 in-lb/hr = 0.4in (chosen) $E_4 = 24.6 \cdot 100$ = We = E_3 = 100 We = 24.6 C /hr 27.3 lbs 0.186 - 2.22 0.186 · v² Chosen from capacity chart: Model MC75-3 self-compensating ¹ v is the final impact velocity of the mass: With pneumatically propelled 2.1 for vertical motion upwards $E_2 = (F - W) \cdot s$ systems this can be 1.5 to 2 times the average velocity. Please take this into account when calculating energy. 2.2 for vertical motion downwards $E_2 = (F + W) \cdot s$ Weight with motor drive = ST ·Hp = 2100 lbs $= \underline{550 \cdot 2.5 \cdot 2}$ 2750 lbs v = 1 ft/s $E_1 = 55 \cdot W \cdot v^2$ $E_1 = 0.186 \cdot 2100 \cdot 1^2$ 390.6 in-lb Hp = 2hp $\mathsf{E_2} = 2750 \cdot 2$ $E_2 = F \cdot s$ 5500 in-lb ST = 2.5 $E_3 = 390.6 + 5500$ $E_3 = E_1 + E_2$ s = 2 = 5890.6 in-lb in (chosen) $E_4 = E_3 \cdot c$ $E_4 = 5890.6 \cdot 20$ 117812 lbs С = 20 /hr We = 5890.631670 lbs 0.186 · v² 0.186 · 12 Chosen from capacity chart: Model ML6450 or MC6450-4 self-compensating Note: Do not forget to include the rotational energy of motor, coupling and gearbox into calculation for E1. Weight on driven rollers $= W \cdot \mu$ = 250 $= 250 \cdot 0.2$ $E_1 = 0.186 \cdot W \cdot v^2$ = 2.5 $E_1 = 0.186 \cdot 250 \cdot 2.5^2$ ft/s 50 lbs $E_2 = F \cdot s$ $E_2 = 50 \cdot 1$ = 0.2290.6 in-lb μ in $E_3 = E_1 + E_2$ = 1 in (chosen) $E_3 = 290.6 + 50$ S 50 in-lb $E_4 = 340.6 \cdot 180$ 61308 in-lb/hr $E_4 = E_3 \cdot c$ = 180 С /hr We = E_3 We = 340.6 293 lbs $0.186 \cdot v^2$ $0.186 \cdot 2.5^{2}$ Chosen from capacity chart: Model MA600 adjustable or SC650-3 self-compensating Swinging weight with $E_1 = 0.186 \cdot W \cdot v^2$ W = 20 lbs $E_1 = 0.186 \cdot 20 \cdot 12^2$ 536 in-lb = $0.186 \cdot I \cdot \omega^2$ = 12 $\mathbf{E_2} = \underline{\mathbf{50 \cdot 0.50}}$ 2.1 in-lb propelling force ft/s $E_2 = \frac{T \cdot s}{s}$ = 50 in-lb 12 Т R R = 12 in $E_3 = 536 + 2.1$ 538.1 in-lb $E_4 = 538.1 \cdot 700$ 376670 in-lb/hr $E_3 = E_1 + E_2$ = 16 L in E_4 $= E_3 \cdot c$ S = 0.5in (chosen) $v_D = \underline{12 \cdot 12}$ 9 ft/s $= \frac{\mathbf{v} \cdot \mathbf{R}}{\mathbf{R}} = \mathbf{\omega} \cdot \mathbf{R}$ С = 700 /hr 6 We = 5385.1 35.7 lbs L E_3 $0.186 \cdot 9^{2}$ $0.186 \cdot v_{D}^{2}$ Chosen from capacity chart: Model MC600 self-compensating Check the side load angle, $\tan \alpha = s/R$, with regard to "Max.Side Load Angle" in the capacity chart (see example 6.2) $v_D = \sqrt{5.4 \cdot D}$ Free falling weight = 200 lbs $v = \sqrt{5.4 \cdot 15}$ 9 ft/s D = 15 $E_1 = 0.186 \cdot W \cdot v^2$ in $E_1 = 0.186 \cdot 200 \cdot 9^2$ 3013.2 in-lb $\mathbf{E_2} = \mathbf{200} \cdot \mathbf{3}$ $E_2 = F \cdot s$ = 3 in (chosen) 600 in-lb $E_3 = 3013.2 + 600$ С = 60 /hr 3613.2 in-lb $\mathsf{E}_3 \ = \mathsf{E}_1 + \mathsf{E}_2$ $E_4 = 3613.2 \cdot 60$ $E_4 = E_3 \cdot c$ 216792 in-lb/hr We = 3613.2239.8 lbs $We = \frac{L_3}{0.186 \cdot v^2}$ $0.186 \cdot 9^{2}$ = W Chosen from capacity chart: Model MA4575 adjustable

Application Formula Example 6.1 Weight rolling/sliding down incline $E_1 = 0.186 \cdot W \cdot (\sqrt{5.4 \cdot H})^2$ = 1100 $E_1 = 0.186 \cdot 1100 \cdot (\sqrt{5.4 \cdot 4})^2$ = 4418.4 in-lb lbs $E_2 = (1100 \cdot \sin(10)) \cdot 2.91$ H = 4 in 555.8 in-lb $= 0.186 \cdot W \cdot v_D^2$ С = 200 /hr $E_3 = 4418.4 + 555.8$ = 4975.2 in-lb $E_2 = (W \cdot \sin(B)) \cdot s$ = 10 $E_4 = 4975.5 \cdot 200$ = 995040 in-lb/hr $= E_1 + E_2$ $E_4 = E_3 \cdot c$ Chosen from capacity chart: $v_D = \sqrt{5.4 \cdot D}$ Model MC4575-2 self-compensating E_3 $0.186 \cdot v_{D}^{2}$ 6.1a propelling force up incline $E_2 = (F - W \cdot \sin(A)) \cdot s$ 6.1b propelling force down incline $E_2 = (F + W \cdot \sin(A)) \cdot s$ $E_1 = 0.186 \cdot W \cdot (\sqrt{5.4 \cdot H})^2$ $E_1 = 0.186 \cdot 120 \cdot (\sqrt{5.4 \cdot 40})^2 =$ 6.2 Weight free falling about W = 120 4821.1 in-lb 0 $= 0.186 \cdot W \cdot v_D^2$ Н = 40 in $E_2 = 0$ in-lb a pivot point $E_3^- = 4821.1 + 0$ 4821.1 in-lb = 0C = 50/hr $E_3 = E_1 + E_2$ R = 12 $E_4 = 4821.1 \cdot 50$ = 241055 in-lb/hr $E_4 = E_3 \cdot c$ = 20 in $\tan \alpha = \frac{s}{R}$ $v_D = (\sqrt{5.4 \cdot H}) \cdot R \cdot L$ Chosen from capacity chart: Model MC4550-1 self-compensating $\overline{0.186 \cdot v_D^2}$ Check the side load angle, $\tan \alpha = s/R$, with regard to "Max. Side Load Angle" in the capacity chart Rotary index table with $E_1 = 0.186 \cdot W_3 \cdot v_s^2$ = 195 lbs $W_a = 195 \cdot 20^2$ 173.3 lbs $= F \cdot s$ 2 . 152 E_2 L = 20 propelling torque in $= E_1 + E_2$ 113.3 lbs = 1.85= <u>1700</u> $= E_3 \cdot c$ = 1700 in-lb 15 Т **V**(ω) $=\frac{v_s \cdot R}{\cdot} = \omega \cdot R$ $E_1 = 0.186 \cdot 173.3 \cdot 1.85^2$ R = 15 in 110.3 in-lb $E_2 = 113.3 \cdot 0.75$ = 60 С /hr 85 in-lb in (chosen) $E_3 = 110.3 + 85$ 195.3 in-lb = 0.750.186 · v² $E_4 = 195.3 \cdot 60$ 11718 in-lb $= W \cdot L^2$ We = 195.3 306.8 lbs 2 · R² $0.186 \cdot 1.85^2$ $= R \cdot \omega$ Chosen from capacity chart: 688 Model SC300-4 or MC225H self-compensating =T/RCheck the side load angle, $\tan \alpha = s/R_s$, with regard to "Max. Side Load Angle" in the capacity chart (see example 6.2) Swinging arm with propelling torque $\mathsf{E}_1 \ = 0.063 \cdot \mathsf{W} \cdot \mathsf{v}^2$ $I = 3.895 \text{ lb-ft-sec}^2$ $E_1 = 6 \cdot 3.895 (70 \cdot 0.01745)^2 =$ 34.86 in-lb $E_2 = 15000 \cdot 1/12$ $= 6 \cdot I \cdot (\omega^2 \cdot 0.01745)^2 \quad \omega = 70 \quad */s$ 1250 in-lb (uniform weight distribution) $E_2 = \frac{T \cdot s}{r}$ $E_3 = 34.86 + 1250$ Τ = 15000 in-lb = 1284.86 in-lb R S = 1 in (chosen) $E_4 = 1284.86 \cdot 500$ = 642430 in-lb/hr 1.22 ft/s $E_3 = E_1 + E_2$ $= 12 \cdot 70$ 1 = 19 in v_D 688 $E_4 = E_3 \cdot c$ R = 12 in 1284.86 4641.1 lb We = = 500 /hr 0.186 · 1.222 L E_3 $We = \frac{L_3}{0.186 \cdot v_D^2}$ Chosen from capacity chart: Model MC4525-4 self-compensating or MA4525 adjustable *Check the side load angle, $\tan \alpha = s/R$, with regard to "Max. Side Load Angle" in the capacity chart (see example 6.2) Swinging arm with propelling force $E_1 = 0.063 \cdot W \cdot v^2$ = 500 $\textbf{E}_1 = 0.063 \cdot 500 \cdot 6^2$ $T = 1600 \cdot 32$ $= 6 \cdot I (\omega \cdot 0.01745)2$ = 2 51200 in-lb ٧ m/s (uniform weight distribution) $=\frac{F \cdot r \cdot s}{s} = \frac{T \cdot s}{s}$ in-lb F = 7000 N $= 51200 \cdot 1.91$ 4075 = 4200 Nm R_s Τ = 0.050 m (chosen) **E**₃ = 1134 + 40755209 $E_3 = E_1 + E_2$ in-lb S $E_4 = 5209 \cdot 90$ = $E_4 = E_3 \cdot c$ = 0.6468810 in-lb m Fp $v_D = \underline{6 \cdot 24}$ 3 ft/s $\underline{\mathbf{v} \cdot \mathbf{R}}_{s} = \underline{\omega}$ R = 0.8m L = 1.2 m L 5209 0.186 · 3² E₃ = 900 /hr 3112 lbs $We = \frac{L_3}{0.186 \cdot v_D^2}$ Chosen from capacity chart: $T = F \cdot R_1$ Model MC4550-4 self-compensating W 10 Weight lowered at controlled speed

E_1	=	0.186 · W · v ²
E_2	=	F·s
E_3	=	$E_1 + E_2$
E_4	=	E ₃ · c
v_{D}	=	V
We	=	E_3
		$0.186 \cdot v_D^2$
F	=	W

		moder me reed i com compo				
= 1000 = 3 = 0.91 = 90	lbs ft/s in (chosen) /hr	E ₁ = 0.186 · 1000 · 3 ² F = 1000	= = = = = =	1674 1000 910 <u>2584</u> 155040 1543	in-lb lbs in-lbs in-lbs/hr lbs	
		Chosen from canacity chart:				

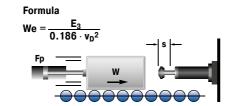
Model MC4525-3 self-compensating

S

Effective Weight (We)

The effective weight (We) can either be the same as the actual weight (examples A and C), or it can be an imaginary weight representing a combination of the propelling force or lever action plus the actual weight (examples B and D).

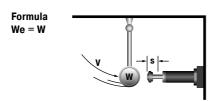
Application


Weight without propelling force

Formula We = W

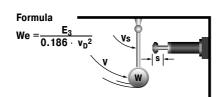
Example

$$\begin{array}{ll} \textbf{W} & = \textbf{100 lbs} \\ \textbf{v}_D & = \textbf{v} = 2 \text{ ft/s} \\ \textbf{E}_1 & = 0.186 \cdot \textbf{W} \cdot \textbf{v}^2 = \\ & 0.186 \cdot 100 \cdot 2^2 = \\ & 74.4 \text{ in-lbs} \\ \textbf{E}_1 & = 74.4 \text{ in-lbs} \\ \textbf{We} & = \begin{array}{ll} \textbf{E}_3 \left(0.186 \cdot \textbf{v}_D{}^2 \right) = \\ 74.4 \ / (0.186 \cdot 2^2 = \textbf{100 lbs} \end{array} \end{array}$$


Weight with propelling force

W = 100 lbs

$$\begin{array}{lll} F &= 200 \text{ lbs} \\ v_D &= v = 2 \text{ ft/s} \\ s &= 2 \text{ in (chosen)} \\ E_1 &= 0.186 \cdot W \cdot v^2 = \\ &= 0.186 \cdot 100 \cdot 2^2 = 74.4 \text{ in-lbs} \\ E_2 &= F \cdot s = 200 \cdot 2 = 400 \text{ in-lbs} \\ E_3 &= E_1 + E_2 = 74.4 + 400 \\ &= 474.4 \text{ in-lbs} \\ We &= E_3 / (0.186 \cdot v_D^2) = \\ &= 474.4 / (0.186 \cdot 2^2) = \textbf{637.6 lbs} \end{array}$$


Weight without propelling force direct against shock absorber

W = 50 lbs

$$\begin{array}{ll} v_D &= v = 2 \text{ ft/s} \\ E_1 &= 0.186 \cdot W \cdot v^2 = \\ &= 0.186 \cdot 50 \cdot 2^2 = 37.2 \text{ in-lbs} \\ E_1 &= E_3 = 37.2 \text{ in-lbs} \\ We &= \frac{E_3}{0.186 \cdot v_D^2} = \\ &= \frac{37.2}{0.186 \cdot 2^2} = \textbf{50 lbs} \end{array}$$

Weight without propelling force with mechanical advantage

W = 150 lbs

Seii-Compe	iisating	Shock Absorbe	1		1	Self-Co
	Oharlas	F		ve Weight	Danie	
TYPES	Stroke inch	Energy capacity in-lbs/cycle	We min.	We max. Ibs	Page	TYPES
MC5M-1-B	0.16	6	0.22	2.0	19	MC3350-2
MC5M-2-B	0.16	6	1.7	4.9	19	MC3350-3
MC5M-3-B	0.16	6	4.4	11.1	19	MC3350-4
MC9M-2-B	0.20	9	1.75	9.0	19	MC4525-0
MC9M-1-B	0.20	9	1.35	7.0	19	MC4525-1
MC25	0.26	20	4	12	19	MC4525-2
MC25H	0.26	20	10	30	19	MC4525-3
MC25L	0.26	20	1.5	5.0	19	MC4525-4
MC30M-1	0.32	31	1.0	4.3	19	MC4550-0
MC30M-2	0.32	31	3.97	11.9	19	MC4550-1
MC30M-3	0.32	31	11.02	33.0	19	MC4550-2
MC75-1	0.40	75	0.5	2.5	19	MC4550-3
MC75-2	0.40	75	2	14	19	MC4550-4
MC75-3	0.40	75	6	80	19	MC4575-0
MC75-4	0.40	75	55	160	19	MC4575-1
MC150	0.5	175	2	22	21	MC4575-2
MC150H	0.5	175	20	200	21	MC4575-3
MC150H2	0.5	175	150	450	21	MC4575-4
MC150H3	0.5	175	400	900	21	MC6450-0
MC225	0.5	360	5	55	21	MC6450-1
MC225H	0.50	360	50	500	21	MC6450-2
MC225H2	0.50	360	400	2,000	21	MC6450-3
MC225H3	0.50	360	1,800	4,000	21	MC6450-4
MC600	1.00	1,200	20	300	21	MC64100-0
MC600H	1.00	1,200	250	2,500	21	MC64100-
MC600H2	1.00	1,200	880	5,000	21	MC64100-2
MC600H3	1.00	1,200	4,800	10,000	21	MC64100-3
SC25M-5	0.32	89	2.2	11	31	MC64100-4
SC25M-6	0.32	89	9	97	31	MC64150-0
SC25M-7	0.32	89	93	1,100	31	MC64150-
SC75M-5	0.39	142	2.2	18	31	MC64150-2
SC75M-6	0.39	142	15	272	31	MC64150-3
SC75M-7	0.39	142	165	1,760	31	MC64150-4
SC190M-5	0.47	274	4.4	35.2	31	SC3325-5
SC190M-6	0.47	274	29	309	31	SC3325-6
SC190M-7	0.47	274	300	3,400	31	SC3325-7
SC300-5	0.59	650	25	100	33	SC3325-8
SC300-6	0.59	650	75	300	33	SC3350-5
SC300-7	0.59	650	200	400	33	SC3350-6
SC300-8	0.59	650	300	1,500	33	SC4525-5
SC300-9	0.59	650	700	4,300	33	SC4525-6
SC650-5	0.91	1,860	50	250	33	SC4525-7
SC650-6	0.91	1,860	200	800	33	SC4525-8
SC650-7	0.91	1,860	700	2,400	33	SC4550-5
SC650-8	0.91	1,860	1,700	5,800	33	SC4550-6
SC650-9	0.91	1,860	4,000	14,000	33	SC4550-7
SC25M-5-HC	0.16	20	2.2	11.0	35	CA2X2-1
SC25M-6-HC	0.16	20	9	97	35	CA2X2-2
SC25M-7-HC	0.16	20	93	1,100	35	CA2X2-3
SC75M-5-HC	0.20	75	2.2	18	35	CA2X2-4
SC75M-6-HC	0.20	75	15	272	35	CA2X4-1
SC75M-7-HC	0.20	75	165	1,760	35	CA2X4-1
SC190M-5-HC	0.30	175	4.4	35.2	35	CA2X4-3
SC190M-6-HC	0.30	175	29	309	35	CA2X4-4
SC190M-0-HC	0.30	175	300	3,400	35	CA2X4-4
SC300-5-HC	0.33	650	25	100	35	CA2X6-1
SC300-5-HC	0.33	650	75	300	35	CA2X6-2
SC300-0-11C SC300-7-HC	0.33	650	200	400	35	CA2X6-3
SC300-7-HC	0.33	650	300	1,500	35	CA2X8-1
SC300-9-HC	0.33	650	700	4,300	35	CA2X8-2
SC650-5-HC	0.59	1,200	50	250	35	CA2X8-3
SC650-6-HC	0.59	1,200	200	800	35	CA2X8-4
SC650-7-HC	0.59		700	2,400	35	CA2X0-4
	0.59	1,200 1,200	1,700	5,800	35	CA2X10-1 CA2X10-2
SC650-8-HC						
SC650-9-HC	0.59	1,200	4,000	14,000	35	CA2X10-3
MC3325-0	0.91	1,505	6.61	24.25	57	CA2X10-4
MC3325-1	0.91	1,505	20	80	57	CA3X5-1
MC3325-2	0.91	1,505	68	272	57	CA3X5-2
MC3325-3	0.91	1,505	230	920	57	CA3X5-3
MC3325-4	0.91	1,505	780	3,120	57	CA3X5-4
MC3350-0	1.91	2,921	11.00	48.50	57	CA3X8-1

Seit-Compe	ensating	Shock Absorbe	1	W.:	1
	Ctroko	Energy conceity	We min.	ve Weight	Dogo
TYPES	Stroke inch	Energy capacity in-lbs/cycle	we min.	We max. Ibs	Page
MC3350-2	1.91	3,100	136	544	57
MC3350-2 MC3350-3	1.91	3,100	460	1,840	57
MC3350-4	1.91	3,100	1,560	6,240	57
MC4525-0	0.91	3,275	15.4	59.2	58
MC4525-1	0.91	3,275	50	200	58
MC4525-2	0.91	3,275	170	680	58
MC4525-3	0.91	3,275	575	2,300	58
MC4525-4	0.91	3,275	1,950	7,800	58
MC4550-0	1.91	6,550	28.6	119.0	58
MC4550-1	1.91	6,550	100	400	58
MC4550-2	1.91	6,550	340	1,360	58
MC4550-3	1.91	6,550	1,150	4,600	58 58
MC4550-4 MC4575-0	1.91 2.91	6,550 10,000	3,900 44.0	15,600 176.4	58
MC4575-1	2.91	10,000	150	600	58
MC4575-2	2.91	10,000	510	2,040	58
MC4575-3	2.91	10,000	1,370	6,920	58
MC4575-4	2.91	10,000	5,850	23,400	58
MC6450-0	1.91	16,551	308	1,190	59
MC6450-1	1.91	16,551	300	1,200	59
MC6450-2	1.91	16,551	1,020	4,080	59
MC6450-3	1.91	16,551	3,460	13,480	59
MC6450-4	1.91	16,551	11,700	46,800	59
MC64100-0	3.91	33,013	154	617	59
MC64100-1	3.91	33,013	600	2,400	59
MC64100-2	3.91	33,013	2,040	8,160	59
MC64100-3 MC64100-4	3.91 3.91	33,013	6,920	27,680	59 59
MC64100-4 MC64150-0	5.91	33,013 50,007	23,400 220	93,600 1,014	59
MC64150-0	5.91	50,007	900	3,600	59
MC64150-2	5.91	50,007	3,060	12,240	59
MC64150-3	5.91	50,007	10,380	41,520	59
MC64150-4	5.91	50,007	35,100	140,400	59
SC3325-5	0.91	1,372	2,998	5,999	73
SC3325-6	0.91	1,372	5,512	12,000	73
SC3325-7	0.91	1,372	10,999	19,698	73
SC3325-8	0.91	1,372	18,999	29,998	73
SC3350-5 SC3350-6	1.91 1.91	2,744	5,999	11,001	73 73
SC4525-5	0.91	2,744 3,009	10,000 7,496	22,002 14,991	74
SC4525-6	0.91	3,009	13,999	29,983	74
SC4525-7	0.91	3,009	27,999	49,999	74
SC4525-8	0.91	3,009	44,998	85,980	74
SC4550-5	1.91	6,019	14,991	26,998	74
SC4550-6	1.91	6,019	25,992	59,498	74
SC4550-7	1.91	6,019	56,998	97,499	74
CA2X2-1	2.00	32,000	1,600	4,800	103
CA2X2-2	2.00	32,000	4,000	12,000	103
CA2X2-3	2.00	32,000	10,000	30,000	103
CA2X2-4	2.00	32,000	25,000	75,000	103
CA2X4-1	4.00	64,000	3,200	9,600	103
CA2X4-2	4.00	64,000	8,000	24,000	103
CA2X4-3 CA2X4-4	4.00 4.00	64,000 64,000	20,000 50,000	80,000 150,000	103
CA2X6-1	6.00	96,000	4,800	14,400	103
CA2X6-2	6.00	96,000	12,000	36,000	103
CA2X6-3	6.00	96,000	30,000	90,000	103
CA2X6-4	6.00	96,000	75,000	225,000	103
CA2X8-1	8.00	128,000	6,400	19,200	103
CA2X8-2	8.00	128,000	16,000	48,000	103
CA2X8-3	8.00	128,000	40,000	120,000	103
CA2X8-4	8.00	128,000	100,000	300,000	103
CA2X10-1	10.00	160,000	8,000	24,000	103
CA2X10-2	10.00	160,000	20,000	60,000	103
CA2X10-3	10.00	160,000	50,000	150,000	103
CA2X10-4	10.00	160,000	125,000	375,000	103
CA3X5-1	5.00	125,000	6,400	19,200	104
CA3X5-2	5.00	125,000	16,000	48,000	104
CA3X5-3	5.00 5.00	125,000 125,000	40,000 100,000	120,000 300,000	104 104
		LC J UUU	100.000	000.000	. 11/4
CA3X5-4 CA3X8-1	8.00	200,000	10,240	30,720	104

Self-Compensating Shock Absorbers Effective Weight Page Stroke Energy capacity We min. We max. TYPES lbs lbs inch in-lbs/cycle CA3X8-3 200,000 64,000 192,000 8.00 104 CA3X8-4 8.00 200,000 160,000 480,000 104 CA3X12-1 12.00 300,000 15,360 46,080 104 CA3X12-2 12.00 300,000 38,400 15,200 104 CA3X12-3 12.00 300,000 96,000 288,000 104 CA3X12-4 12.00 300,000 240,000 720,000 104 CA4X6-3 6.00 420,000 8,000 19,000 105 CA4X6-5 6.00 420,000 19,000 41,000 105 CA4X6-7 6.00 420,000 41,000 94,000 105 560,000 11,000 25,000 CA4X8-3 8.00 105 CA4X8-5 8.00 560,000 25,000 55,000 105 8.00 560,000 CA4X8-7 55,000 125,000 105 CA4X16-3 16.00 1,120,000 22,000 50,000 105 CA4X16-5 16.00 1,120,000 50,000 110,000 105 1,120,000 110,000 250,000 CA4X16-7 16.00 105

Shock Absorbers Soft Contact and Self-Compensating									
				Effective	e Weight				
			Soft-0	Contact	Self-Com	pensating			
TYPES	Stroke inch	Energy capacity in-lbs/cycle	me min. Ibs	me max. Ibs	me min. Ibs	me max. Ibs	Page		
SC190-0	0.63	225	-	-	1.54	8.82	29		
SC190-1	0.63	225	5	13	3	15	29		
SC190-2	0.63	225	12	36	8	40	29		
SC190-3	0.63	225	30	90	20	100	29		
SC190-4	0.63	225	75	200	50	225	29		
SC300-0	0.75	300	-	-	1.54	4	29		
SC300-1	0.75	300	5	15	3	18	29		
SC300-2	0.75	300	15	50	10	60	29		
SC300-3	0.75	300	50	150	30	180	29		
SC300-4	0.75	300	150	400	70	450	29		
SC650-0	1.00	650	-	-	5.07	30.86	29		
SC650-1	1.00	650	24	80	17	100	29		
SC650-2	1.00	650	75	250	50	300	29		
SC650-3	1.00	650	240	800	150	900	29		
SC650-4	1.00	650	800	2,400	450	2,600	29		
SC925-0	1.58	975	18	55	10	65	29		
SC925-1	1.58	975	50	160	30	200	29		
SC925-2	1.58	975	130	460	90	600	29		
SC925-3	1.58	975	400	1,350	250	1,600	29		
SC925-4	1.58	975	1,200	4,300	750	4,600	29		

Adjustable Shock Absorbers								
		Max. Energ	y Capacity	Effecti	Effective Weight			
	Stroke	E ₃	E ₄	We min.	We max.	Page		
TYPES	inch	in-lbs/cycle	in-lbs/h	lbs	lbs			
MA30M	0.32	31	50,000	0.5	31	37		
MA50M	0.28	50	120,000	10	45	37		
MA35	0.40	35	53,000	13	125	37		
MA150	0.50	200	300,000	2	240	37		
MA225	0.75	300	400,000	5	500	37		
MA600	1.00	600	600,000	20	3,000	37		
MA900	1.58	900	800,000	30	4,500	37		
AS3/8X1	1.00	600	600,000	10	1,250	39		
NA3/8x1	1.00	600	600,000	10	1,250	39		
MA3325	0.91	1,900	670,000	20	3,800	77		
ML3325	0.91	1,900	670,000	661	110,231	77		
MA3350	1.91	3,800	760,000	28	5,400	77		
ML3350	1.91	3,800	760,000	1,102	176,370	77		
MA4525	0.91	3,762	950,000	95	22,000	78		
ML4525	0.91	3,762	950,000	6,614	242,508	78		
MA4550	1.91	7,523	1,000,000	150	32,000	78		
ML4550	1.91	7,523	1,000,000	11,023	396,832	78		
MA4575	2.91	11,506	1,300,000	155	33,000	78		
ML6425	0.91	10,046	1,100,000	15,432	661,386	79		
MA6450	1.91	20,135	1,300,000	480	110,000	79		
ML6450	1.91	20,135	1,300,000	24,250	1,102,310	79		
MA64100	3.91	40,005	1,700,000	600	115,000	79		
MA64150	5.91	60,008	2,200,000	730	175,000	79		
SASL11/8X1-R	0.91	8,000	1,250,000	700	700,000	81		
SASL11/8X2-R	1.91	16,000	1,500,000	850	1,300,000	81		
SALD½X1-P	0.91	1,350	750,000	10	2,700	83		
SALD½X2-P	1.91	2,700	870,000	21	5,700	83		
SALD¾X1-P	0.91	3,000	1,100,000	20	18,000	84		
SALD¾X2-P	1.91	6,000	1,300,000	35	32,000	84		
SALD¾X3-P	2.91	9,000	1,600,000	50	46,000	84		
SALD11/8X2-P	1.91	16,000	1,500,000	120	50,000	85		
SALD11/8X4-P	3.91	32,000	2,000,000	160	100,000	85		
SALD11/8X6-P	5.91	48,000	2,500,000	200	150,000	85		
SALDN¾X1-RF	0.98	3,450	950,000	95	22,000	87		
SALDN¾X2-RF	1.97	6,900	1,000,000	150	32,000	87		
SALDN¾X3-RF	2.95	10,350	1,300,000	155	33,000	87		
SALDN¾X1-RR	0.98	3,450	950,000	95	22,000	88		
SALDN¾X2-RR	1.97	6,900	1,000,000	150	32,000	88		
SALDN¾X3-RR	2.95	10,350	1,300,000	155	33,000	88		
A1½X2	2.00	21,000	3,200,000	430	70,000	107		
A1½X3½	3.50	36,750	5,600,000	480	80,000	107		
A11/2X5	5.00	52,500	8,000,000	500	90,000	107		
A11/2X61/2	6.50	68,250	10,400,000	680	100,000	107		
A2X2	2.00	32,000	9,600,000	560	170,000	108		
A2X4	4.00	80,000	12,000,000	560	180,000	108		
A2X6	6.00	120,000	14,400,000	570	190,000	108		
A2X8	8.00	170,000	16,800,000	580	200,000	108		
A2X10	10.00	210,000	19,200,000	720	250,000	108		
A3X5	5.00	140,000	20,000,000	1,050	340,000	109		
A3X8	8.00	250,000	32,000,000	1,200	400,000	109		
A3X12	12.00	390,000	48,000,000	1,350	450,000	109		

Miniature Shock Absorbers

Tuning for almost any design

Miniature shock absorbers from ACE are tried-and-tested quality products used in millions of industrial designs throughout the world. They optimize machines in an equally reliable and effective way by decelerating loads quickly and without recoil.

The compact, maintenance-free, hydraulic machine elements can be easily and quickly integrated in any design and certain models can be directly integrated in pneumatic cylinders. They reduce the load and increase the efficiency for handling devices, rotary and pivoting actuators, linear cylinders and many other industrial applications. ACE ensures a long service life with innovative sealing techniques, shock absorber and inner pressure chambers fully machined from solid high tensile alloy steel.

Miniature Shock Absorbers

MC5 to MC75	Page 18
Self-Compensating	

Shock absorbers in miniature format

Miniature slides, Pneumatic cylinders, Handling modules, Copiers

MC150 to MC600 Page 20

Self-Compensating, Rolling Diaphragm Technology

Exceptionally high endurance and with the lowest resetting force

Linear slides, Pneumatic cylinders, Swivel units, Handling modules

MC150-V4A to MC600-V4A Page 22

Self-Compensating, Stainless Steel, Rolling Diaphragm Technology Exceptionally high endurance with stainless steel corrosion protection Clean room areas, Pharmaceutical industry, Medical technology, Food industry

PMCN150 to PMCN600 Page 24

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

Reliable protection from fluids and particulate Finishing and processing centers, Clean room areas, Pharmaceutical industry,

Medical technology

PMCN150-V4A to PMCN600-V4A Page 26

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow **Optimum corrosion protection**

Finishing and processing centers, Clean room areas, Pharmaceutical industry, Medical technology

SC190 to SC925 Page 28

Self-Compensating, Soft-Contact

Long stroke and soft impact

Linear slides, Pneumatic cylinders, Handling modules, Machines and plants

SC225 to SC2190 Page 30

Self-Compensating, Piston Tube Technology

Piston tube design for maximum energy absorption

Linear slides, Pneumatic cylinders, Swivel units, Handling modules

SC2300 to SC2650 Page 32

Self-Compensating, Piston Tube Technology

Piston tube design for maximum energy absorption

Turntables, Swivel units, Robot arms, Linear slides

SC25-HC to SC650-HC Page 34

Self-Compensating

Miniature self compensating shocks for high-speed applications

Linear slides, Tool machines, Handling modules, Production plants

MA30 to MA900 Page 36

Adjustable

Stepless adjustment

Linear slides, Pneumatic cylinders, Swivel units, Handling modules

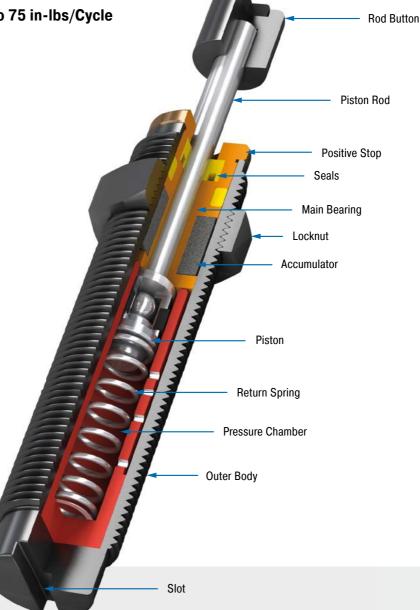
3/8x1 Page 38

Adjustable

Miniature adjustable shock delivers convenience

Linear slides, Transport industry, Tool machines, Handling modules

MC5 to MC75


Shock absorbers in miniature format

Self-Compensating
Energy capacity 6 in-lbs/Cycle to 75 in-lbs/Cycle
Stroke 0.16 in to 0.40 in

Ideal for compact, efficient designs: The miniature size of the product family MC5 to MC75 delivers very short overall lengths and low return forces.

The outer body of each shock, produced from one solid piece, is filled with temperature stable oil, offers a continuous outer body thread including a supplied lock nut and also has an integrated positive stop. These maintenance-free hydraulic machine elements from ACE are ready for immediate installation. A wide range of energy absorption and effective weight are further benefits in these compact units. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating miniature shock absorbers are perfectly suited to use in applications such as rotary actuators, automation, light industrial manufacturing, material handling and packaging equipment, medical, electronics and robotics.

Technical Data

Energy capacity: 6 in-lbs/Cycle to

75 in-lbs/Cycle

Impact velocity range: 1.89 ft/sec to to

12 ft/sec

Operating temperature range: 14 °F to

150 °F

Mounting: In any position **Positive stop:** Integrated

Material: Outer body, Accessories: Steel

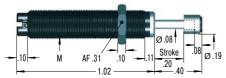
corrosion-resistant coating; Piston rod: Hardened stainless steel; Rod end button: Steel, MC25 and MC75: Elastomer Insert; Locknut: Steel, MC5 and MC9: Aluminium

Damping medium: Oil, temperature stable

Application field: Miniature slides, Pneumatic cylinders, Handling modules, Copiers, Measuring tables, Machines and plants, Locking systems

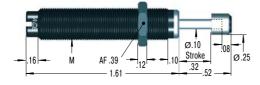
Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

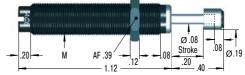

On request: Increased corrosion protection. Special finishes. Models without rod end button also available on request.

Self-Compensating

MC5M

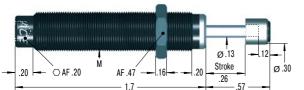


MC9M

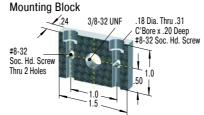


Standard version without button for MC5, MC9 and MC10

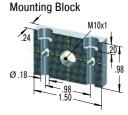
MC30M



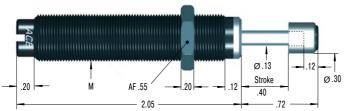
MC10M


Standard version without button for MC5, MC9 and MC10 M8x0.75 also available to order

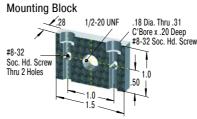
MC25



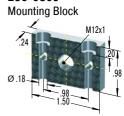
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0306

250-0307



MC75



Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0308

250-0309

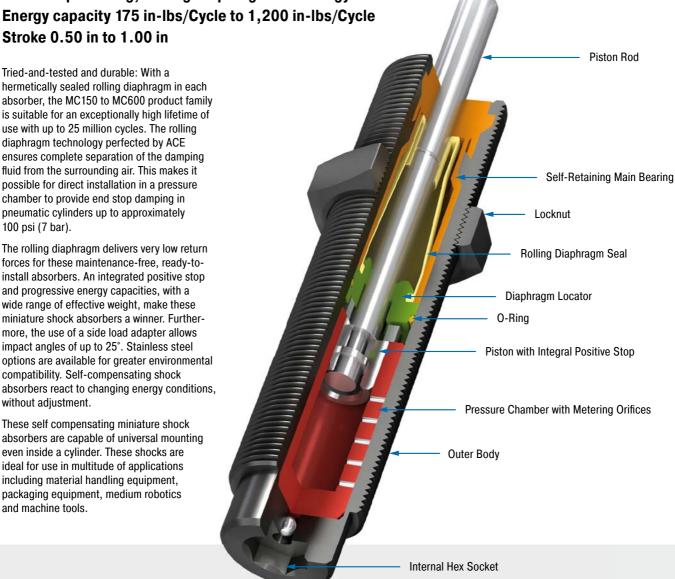
Accessories, mounting, installation ... starting on page 40.

Max. Energy Capacity Effective Weight Return Force Return Force Return Force Return Force Return Force Return Side Load Angle min. max. Time max. M min. max. max.	
TYPES E3 in-lbs/cycle E4 in-lbs/h We min. lbs We max. lbs min. lbs max. lbs Time max. s M MC5M-1-B 6 18,000 0.22 2.0 0.44 1.15 0.2 2 M5x0.5 MC5M-2-B 6 18,000 1.7 4.9 0.44 1.15 0.2 2 M5x0.5 MC5M-3-B 6 18,000 4.4 11.1 0.44 1.15 0.2 2 M5x0.5 MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	
TYPES in-lbs/cycle in-lbs/h lbs lbs lbs s ° MC5M-1-B 6 18,000 0.22 2.0 0.44 1.15 0.2 2 M5x0.5 MC5M-2-B 6 18,000 1.7 4.9 0.44 1.15 0.2 2 M5x0.5 MC5M-3-B 6 18,000 4.4 11.1 0.44 1.15 0.2 2 M5x0.5 MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	
MC5M-1-B 6 18,000 0.22 2.0 0.44 1.15 0.2 2 M5x0.5 MC5M-2-B 6 18,000 1.7 4.9 0.44 1.15 0.2 2 M5x0.5 MC5M-3-B 6 18,000 4.4 11.1 0.44 1.15 0.2 2 M5x0.5 MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	Weight
MC5M-2-B 6 18,000 1.7 4.9 0.44 1.15 0.2 2 M5x0.5 MC5M-3-B 6 18,000 4.4 11.1 0.44 1.15 0.2 2 M5x0.5 MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	lbs
MC5M-3-B 6 18,000 4.4 11.1 0.44 1.15 0.2 2 M5x0.5 MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	0.007
MC9M-1-B 9 18,000 1.35 7.0 0.31 0.85 0.3 2 M6x0.5 MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	0.007
MC9M-2-B 9 18,000 1.75 9.0 0.31 0.85 0.3 2 M6x0.5	0.007
	0.009
MC10MH-B 11 35.000 1.5 11.0 0.5 1.0 0.3 3 M8x1	0.009
	0.017
MC10ML-B 11 35,000 0.75 6.0 0.5 1.0 0.3 3 M8x1	0.017
MC30M-1 31 50,000 1.0 4.3 1.16 1.57 0.3 2 M8x1	0.022
MC30M-2 31 50,000 3.97 11.9 1.16 1.57 0.3 2 M8x1	0.022
MC30M-3 31 50,000 11.02 33.0 1.16 1.57 0.3 2 M8x1	0.022
MC25 20 200,000 4 12 0.8 1.7 0.2 2 3/8-32 UNF /	10x1 0.044
MC25H 20 200,000 10 30 0.8 1.7 0.2 2 3/8-32 UNF /	10x1 0.044
MC25L 20 200,000 1.5 5.0 0.8 1.7 0.2 2 3/8-32 UNF /	10x1 0.044
MC75-1 75 250,000 0.5 2.5 1.0 2.5 0.3 2 1/2-20 UNF /	12x1 0.088
MC75-2 75 250,000 2 14 1.0 2.5 0.3 2 1/2-20 UNF /	12x1 0.088
MC75-3 75 250,000 6 80 1.0 2.5 0.3 2 1/2-20 UNF /	12x1 0.088
MC75-4 75 250,000 55 160 1.0 2.5 0.3 2 1/2-20 UNF /	12x1 0.088

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

MC150 to MC600

Exceptionally high endurance and with the lowest resetting force


Self-Compensating, Rolling Diaphragm Technology

Tried-and-tested and durable: With a hermetically sealed rolling diaphragm in each absorber, the MC150 to MC600 product family is suitable for an exceptionally high lifetime of use with up to 25 million cycles. The rolling diaphragm technology perfected by ACE ensures complete separation of the damping fluid from the surrounding air. This makes it possible for direct installation in a pressure chamber to provide end stop damping in pneumatic cylinders up to approximately 100 psi (7 bar).

Stroke 0.50 in to 1.00 in

The rolling diaphragm delivers very low return forces for these maintenance-free, ready-toinstall absorbers. An integrated positive stop and progressive energy capacities, with a wide range of effective weight, make these miniature shock absorbers a winner. Furthermore, the use of a side load adapter allows impact angles of up to 25°. Stainless steel options are available for greater environmental compatibility. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self compensating miniature shock absorbers are capable of universal mounting even inside a cylinder. These shocks are ideal for use in multitude of applications including material handling equipment, packaging equipment, medium robotics and machine tools

Technical Data

Energy capacity: 175 in-lbs/Cycle to

1,200 in-lbs/Cycle

Impact velocity range: 0.22 ft/sec to 19.7 ft/sec. Other speeds on request. Operating temperature range: 32 °F to

150 °F

Mounting: In any position Positive stop: Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Rolling diaphragm: EPDM

Damping medium: Oil, temperature stable

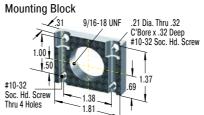
Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Locking systems

Note: If precise end position data is required consider use of a stop collar.

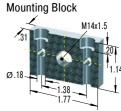
Safety information: External materials in the surrounding area can attack the rolling seal and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to 101.53 psi.


On request: Increased corrosion protection. Special threads or other special options.

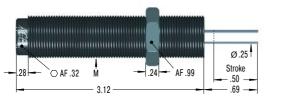
Products for UNF and metric thread available


Self-Compensating, Rolling Diaphragm Technology

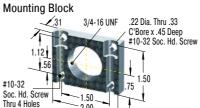
MC150



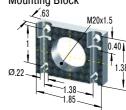
Product available for UNF and metric thread (for metric add suffix -M from part number) M14x1 also available to special order (add suffix -ME to part number)


250-0318

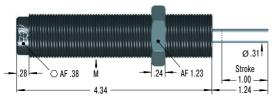
250-0352



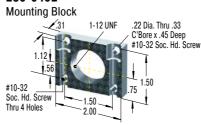
MC225



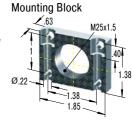
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0401

250-0353 Mounting Block



MC600



Product available for UNF and metric thread (for metric add suffix -M from part number) M27x3 also available to special order (add suffix -ML to part number)

250-0402

250-0044

Additional accessories, mounting, installation ... starting on page 40.

Performance

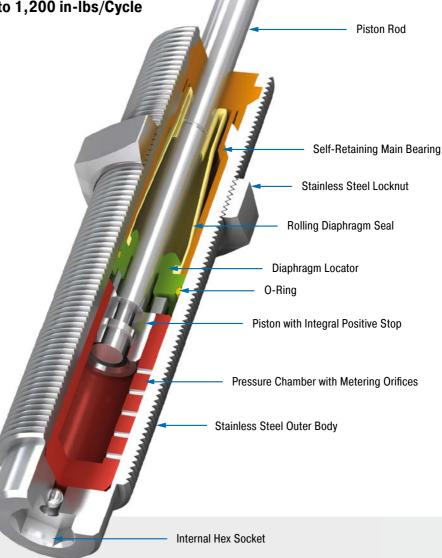
	Max. Energ	y Capacity	Effectiv	ve Weight						
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	We min.	We max. Ibs	Return Force min. Ibs	Return Force max. Ibs	Return Time s	¹ Side Load Angle max.	М	Weight Ibs
MC150	175	300,000	2	22	0.7	1.2	0.4	4	9/16-18 UNF / M14x1.5	0.119
MC150H	175	300,000	20	200	0.7	1.2	0.4	4	9/16-18 UNF / M14x1.5	0.119
MC150H2	175	300,000	150	450	0.7	1.2	0.4	4	9/16-18 UNF / M14x1.5	0.119
MC150H3	175	300,000	400	900	0.7	1.2	1.0	4	9/16-18 UNF / M14x1.5	0.119
MC225	360	400,000	5	55	1.0	1.5	0.3	4	3/4-16 UNF / M20x1.5	0.340
MC225H	360	400,000	50	500	1.0	1.5	0.3	4	3/4-16 UNF / M20x1.5	0.340
MC225H2	360	400,000	400	2,000	1.0	1.5	0.3	4	3/4-16 UNF / M20x1.5	0.340
MC225H3	360	400,000	1,800	4,000	1.0	1.5	0.3	4	3/4-16 UNF / M20x1.5	0.340
MC600	1,200	600,000	20	300	1.0	2.0	0.6	2	1-12 UNF / M25x1.5	0.569
MC600H	1,200	600,000	250	2,500	1.0	2.0	0.6	2	1-12 UNF / M25x1.5	0.569
MC600H2	1,200	600,000	880	5,000	1.0	2.0	0.6	2	1-12 UNF / M25x1.5	0.569
MC600H3	1 200	600 000	4 800	10 000	1.0	2.0	0.6	2	1-12 UNF / M25x1 5	0.569

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

MC150-V4A to MC600-V4A

Exceptionally high endurance with stainless steel corrosion protection

Self-Compensating, Stainless Steel, Rolling Diaphragm Technology


Energy capacity 175 in-lbs/Cycle to 1,200 in-lbs/Cycle

Stroke 0.50 in to 1.00 in

Brilliant in every respect: These high performance stainless steel miniature shock absorbers are based on the MC150 to MC600 product family and its proven damping technology. This means that these special absorbers offer all of the benefits of the standard units such as the ACE rolling diaphragm technology which delivers maximum service life and direct installation in a pressure chamber with up to approx. 100 psi (7 bar).

Thanks to perfectly progressive maximum energy absorption and effective weight potential, their use is augmented even further by the stainless steel outer body and a complete range of stainless accessories (AISI 316L). Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating miniature stainless steel shock absorbers are used in medical and electrotechnology, as well as marine, packaging, and chemical applications. Shocks can be filled with food-grade oil for food processing applications.

Technical Data

Energy capacity: 175 in-lbs/Cycle to

1,200 in-lbs/Cycle

Impact velocity range: 0.22 ft/sec to 19.7 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

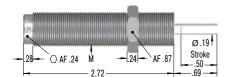
Mounting: In any position **Positive stop:** Integrated

Material: Outer body, Locknut, Accessories: Stainless steel (1.4404, AISI 316L); Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Rolling

diaphragm: EPDM

Damping medium: Oil, temperature stable

Application field: Clean room areas, Pharmaceutical industry, Medical technology, Food industry, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers, Measuring


Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the rolling seal and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to 101.53 psi.

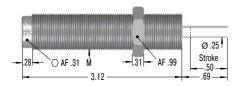
On request: Special oil with food approval. Special threads or other special options available on request.

Self-Compensating, Stainless Steel, Rolling Diaphragm Technology

MC150M-V4A

250-0753 Nylon Button

 E_3 max = 123.91 lbs


250-0441

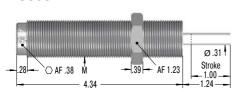
Locknut

250-0255 Mounting Block

MC225M-V4A

250-0754

Nylon Button ø.66 Ø.25


 $\mathbf{E}_{_{3}} \max = 292.07 \text{ lbs}$

250-0442 Locknut

MC600M-V4A

250-0755 Nylon Button

Ø.31

 $E_3 \max = 601.85 \text{ lbs}$

250-0443 Locknut

Additional accessories, mounting, installation ... starting on page 40.

Performance Max. Energy Capacity Effective Weight Return Force Return Force 1 Side Load Angle We min We max. max. Return Time Weight TYPES in-lbs/cycle in-lbs/h lbs lbs lbs lbs lbs MC150M-V4A 300,000 22 M14x1.5 0.119 175 2 0.7 1.2 0.4 MC150MH-V4A 175 300,000 20 200 0.7 0.4 M14x1 5 0.119 12 MC150MH2-V4A 175 300,000 150 450 0.7 1.2 M14x1.5 0.119 MC150MH3-V4A 175 300,000 400 900 0.7 1.2 1.0 M14x1.5 0.119 MC225M-V4A 400,000 55 M20x1.5 0.340 360 5 1.0 1.5 0.3 MC225MH-V4A 400,000 50 500 1.0 1.5 0.3 M20x1.5 0.340 MC225MH2-V4A 360 400,000 400 2,000 1.0 1.5 0.3 M20x1.5 0.340 MC225MH3-V4A 360 400,000 1,800 4,000 1.0 1.5 0.3 M20x1.5 0.340 MC600M-V4A 1,200 600,000 300 1.0 2.0 M25x1.5 0.569 20 0.6 MC600MH-V4A 1,200 600,000 250 2.500 1.0 M25x1.5 0.569 2.0 0.6 2 MC600MH2-V4A 1,200 600,000 880 5,000 1.0 2.0 0.6 2 M25x1.5 0.569

600,000

4,800

10,000

1,200

MC600MH3-V4A

1.0

2.0

0.6

M25x1.5

0.569

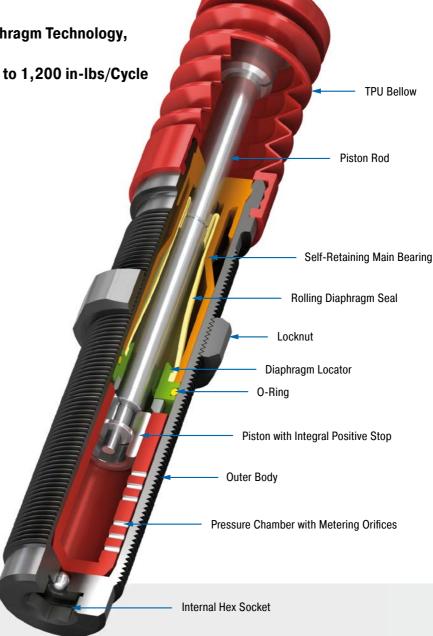
¹ For applications with higher side load angles please contact ACE.

PMCN150 to PMCN600

Reliable protection from fluids and particulate

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

Energy capacity 175 in-lbs/Cycle to 1,200 in-lbs/Cycle


Stroke 0.50 in to 1.00 in

Hermetically sealed: The shock absorbers from the ACE Protection family PMCN have a compact, perfectly sealed cap as a special feature.

This protection bellows, made of TPU (thermoplastic polyurethane), safely encapsulates the proven ACE rolling diaphragm from the outside environment. Aggressive cutting, lubricating and cleaning agents don't stand a chance and the function of the maintenancefree, ready-to-install shock absorber is retained. They are also available in full stainless steel.

The PMCN range is a good alternative to the SP type air bleed collar if no compressed air is available on the machine or system.

Reliable protection against aggressive environments including fluids and abrasives, these self-compensating miniature shock absorbers are the first choice where conventional dampers wear out too quickly. Use them in harsh environments where cutting, cooling or cleaning agents can attack.

Technical Data

Energy capacity: 175 in-lbs/Cycle to

1,200 in-lbs/Cycle

Impact velocity range: 0.22 ft/sec to 19.7 ft/sec. Other speeds on request. Operating temperature range: 32 °F to

150 °F

Mounting: In any position Positive stop: Integrated

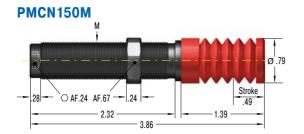
Material: Outer body: Steel corrosion-resistant coating; Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Bellow: TPU, steel insert: Stainless steel (1.4404/1.4571, AISI 316L/316Ti); Rolling

diaphragm: EPDM

Damping medium: Oil, temperature stable Application field: Finishing and processing centers, Clean room areas, Pharmaceutical

industry, Medical technology, Food industry, Linear slides, Pneumatic cylinders, Machines and plants

Note: Final preliminary test must be done on the application.

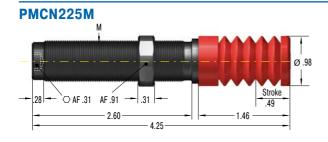

Safety information: Do not paint the shock absorbers due to heat emission.

On request: Special accessories available on

request.

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

250-0233 Locknut

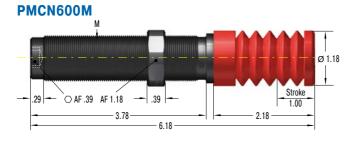


250-0352 Mounting Block

M14x1.5

201

1.14


Locknut

M20x1.5

AF.90

250-0207

M25x1.5

250-0040

Additional accessories, mounting, installation ... starting on page 40.

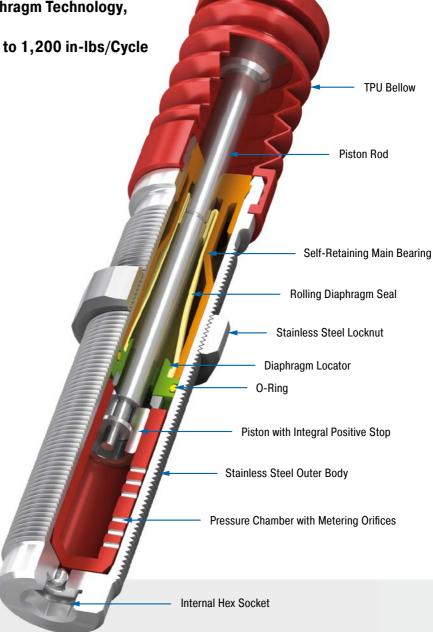
Performance										
	Max. Energy Capacity		Effective Weight							
						Return Force	Side Load Angle			
	E ₃	E_4	We min.	We max.	min.	max.	Return Time	max.	М	Weight
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs	lbs	lbs	S	۰		lbs
PMCN150M	175	300,000	2	22	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH	175	300,000	20	190	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH2	175	300,000	155	440	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH3	175	300,000	400	900	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN225M	360	400,000	5	50	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH	360	400,000	50	510	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH2	360	400,000	400	2,000	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH3	360	400,000	1,800	4,000	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN600M	1,200	600,000	20	300	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH	1,200	600,000	250	2,490	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH2	1,200	600,000	880	5,000	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH3	1,200	600,000	4,800	10,000	1.80	20.23	0.6	2	M25x1.5	0.699

PMCN150-V4A to PMCN600-V4A

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

Optimum corrosion protection

Energy capacity 175 in-lbs/Cycle to 1,200 in-lbs/Cycle


Stroke 0.50 in to 1.00 in

Hermetically sealed and rustproof: The Protection product family PMCN is also available in a stainless steel design. This is of particular interest to the food and packaging industries.

Their main feature is the compact, totally sealed bellow between the body and the cap made of TPU (thermoplastic polyurethane). This protection safely encapsulates the ACE rolling diaphragm from the outside environment. Aggressive fluids don't stand a chance.

The PMCN range is an excellent alternative if the accessory option of the SP type air bleed collar cannot be used due to a lack of compressed air.

The PMCN range self-compensating miniature shock absorbers, produced from stainless steel, are primarily suitable for use in the food industry, but are also wherever a high-quality appearance is important e.g. in shipbuilding.

Technical Data

Energy capacity: 175 in-lbs/Cycle to

1,200 in-lbs/Cycle

Impact velocity range: 0.26 ft/sec to 19.7 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

Mounting: In any position **Positive stop:** Integrated

Material: Outer body: Stainless steel (1.4404, AISI 316L); Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Bellow: TPU, steel insert: Stainless steel (1.4404/1.4571, AISI 316L/316Ti); Rolling diaphragm: EPDM

Damping medium: Oil, temperature stable

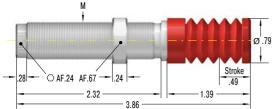
Application field: Finishing and processing centers, Clean room areas, Pharmaceutical industry, Medical technology, Food industry,

Machines and plants

Note: Final preliminary test must be done on

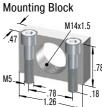
the application.

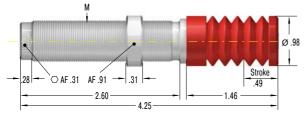
Safety information: Do not paint the shock absorbers due to heat emission.


On request: Special accessories available on

request.

Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

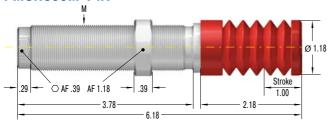



250-0441 Locknut

250-0255

PMCN225M-V4A

250-0442


Locknut

250-0434

PMCN600M-V4A

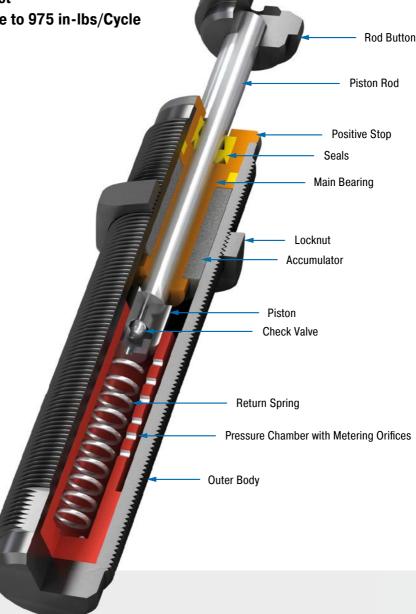
250-0443 Locknut

250-0436 Mounting Block

Additional accessories, mounting, installation ... starting on page 40.

Performance					1					
	Max. Energy Capacity		Effective Weight							
					Return Force	Return Force		Side Load Angle		
	E ₃	E_4	We min.	We max.	min.	max.	Return Time	max.	М	Weight
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs	lbs	lbs	s	•		lbs
PMCN150M-V4A	175	300,000	2	22	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH-V4A	175	300,000	20	190	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH2-V4A	175	300,000	155	440	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN150MH3-V4A	175	300,000	400	900	1.80	17.98	1.0	4	M14x1.5	0.148
PMCN225M-V4A	360	400,000	5	55	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH-V4A	360	400,000	50	510	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH2-V4A	360	400,000	400	2,000	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN225MH3-V4A	360	400,000	1,800	4,000	1.80	19.11	0.3	4	M20x1.5	0.375
PMCN600M-V4A	1,200	600,000	20	300	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH-V4A	1,200	600,000	250	2,490	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH2-V4A	1,200	600,000	880	5,000	1.80	20.23	0.6	2	M25x1.5	0.699
PMCN600MH3-V4A	1,200	600,000	4,800	10,000	1.80	20.23	0.6	2	M25x1.5	0.699

SC190 to SC925


Long stroke and soft impact

Self-Compensating, Soft-Contact Energy capacity 225 in-lbs/Cycle to 975 in-lbs/Cycle Stroke 0.63 in to 1.58 in

Ideal for soft damping: the SC found in the model code from the ACE product family SC190 to SC925 stands for ,soft contact'. These miniature shock absorbers manufactured from one solid piece are designed in such a way that they can be setup with a linear or a progressive braking curve. The soft damping character is thanks to the special, long strokes which produce smooth deceleration and low reaction forces.

These maintenance-free, ready-to-install hydraulic machine elements are equipped with an integrated positive stop. The use of side load adapter allows impact angles of up to 25°. Thanks to the designed overlapping effective weight ranges, these dampers cover an effective load range of 3 lbs. to 4,400 lbs! Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These miniature self-compensating shock absorbers from the SC190 to SC925 product family are used in industrial, automation and machine engineering and primarily in the areas of handling and automation.

Technical Data

Energy capacity: 225 in-lbs/Cycle to

975 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 12 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

Mounting: In any position Positive stop: Integrated

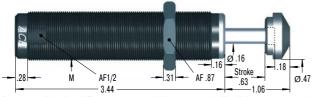
Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod:

Hardened stainless steel

Damping medium: Oil, temperature stable Application field: Linear slides, Pneumatic cylinders, Handling modules, Machines and

plants, Finishing and processing centers, Measuring tables, Tool machines

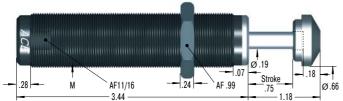
Note: If precise end position data is required consider use of a stop collar.


Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated or weartec finish (seawater resistant) or other special finishes available to special order. Models without rod end button.

Issue 04.2018 - Specifications subject to change

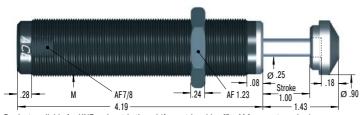
Self-Compensating, Soft-Contact


SC190; 0 to 4

Product available for UNF and metric thread (for metric add suffix -M from part number)

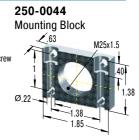
250-0318 250-0352 Mounting Block Mounting Block 9/16-18 UNF .21 Dia. Thru .32 C'Bore x .32 Deer Soc. Hd. Screw Thru 4 Holes

SC300; 0 to 4

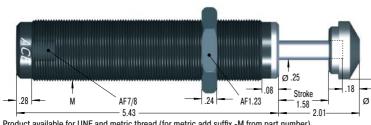


Product available for UNF and metric thread (for metric add suffix -M from part number)

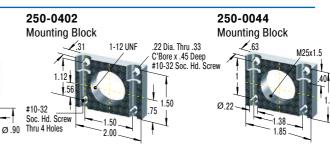
250-0401 Mounting Block .22 Dia. Thru .33 3/4-16 UNF C'Bore x .45 Deep #10-32 Soc. Hd. Screw Soc. Hd. Screw Thru 4 Holes



SC650; 0 to 4



Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0402 Mounting Block 1-12 UNF .22 Dia. Thru .33 C'Bore x .45 Deep #10-32 Soc. Hd. Screw #10-32 _______ Soc. Hd. Screw Thru 4 Holes

SC925; 0 to 4

Product available for UNF and metric thread (for metric add suffix -M from part number)

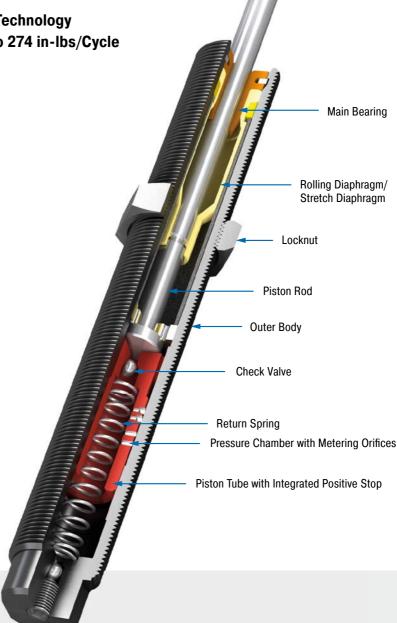
Additional accessories, mounting, installation ... starting on page 40.

Performa	nce												
	Max. Energy Capacity		Effective Weight										
			Soft-Contact Self-Compensati										
								Return	Return	Return	1 Side Load		
	E ₃	E ₄	We min.	We max.	We min.	We max.	Hardness	Force min.	Force max.	Time	Angle max.	М	Weight
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs	lbs	lbs		lbs	lbs	\$	_		lbs
SC190-0	225	300,000	-	-	1	9	-0	0.9	1.9	0.25	5	9/16-18 UNF / M14x1.5	0.176
SC190-1	225	300,000	5	13	3	15	-1	0.9	1.9	0.25	5	9/16-18 UNF / M14x1.5	0.176
SC190-2	225	300,000	12	36	8	40	-2	0.9	1.9	0.25	5	9/16-18 UNF / M14x1.5	0.176
SC190-3	225	300,000	30	90	20	100	-3	0.9	1.9	0.25	5	9/16-18 UNF / M14x1.5	0.176
SC190-4	225	300,000	75	200	50	225	-4	0.9	1.9	0.25	5	9/16-18 UNF / M14x1.5	0.176
SC300-0	300	400,000	-	-	1	4	-0	1.05	2.15	0.1	5	3/4-16 UNF / M20x1.5	0.386
SC300-1	300	400,000	5	15	3	18	-1	1.05	2.15	0.1	5	3/4-16 UNF / M20x1.5	0.386
SC300-2	300	400,000	15	50	10	60	-2	1.05	2.15	0.1	5	3/4-16 UNF / M20x1.5	0.386
SC300-3	300	400,000	50	150	30	180	-3	1.05	2.15	0.1	5	3/4-16 UNF / M20x1.5	0.386
SC300-4	300	400,000	150	400	70	450	-4	1.05	2.15	0.1	5	3/4-16 UNF / M20x1.5	0.386
SC650-0	650	600,000	-	-	5	31	-0	2.4	6.87	0.20	5	1-12 UNF / M25x1.5	0.739
SC650-1	650	600,000	24	80	17	100	-1	2.4	6.87	0.20	5	1-12 UNF / M25x1.5	0.739
SC650-2	650	600,000	75	250	50	300	-2	2.4	6.87	0.20	5	1-12 UNF / M25x1.5	0.335
SC650-3	650	600,000	240	800	150	900	-3	2.4	6.87	0.20	5	1-12 UNF / M25x1.5	0.335
SC650-4	650	600,000	800	2,400	450	2,600	-4	2.4	6.87	0.20	5	1-12 UNF / M25x1.5	0.335
SC925-0	975	800,000	18	55	10	65	-0	2.4	7.4	0.40	5	1-12 UNF / M25x1.5	0.420
SC925-1	975	800,000	50	160	30	200	-1	2.4	7.4	0.40	5	1-12 UNF / M25x1.5	0.420
SC925-2	975	800,000	130	460	90	600	-2	2.4	7.4	0.40	5	1-12 UNF / M25x1.5	0.420
SC925-3	975	800,000	400	1,350	250	1,600	-3	2.4	7.4	0.40	5	1-12 UNF / M25x1.5	0.420
SC925-4	975	800,000	1,200	4,300	750	4,600	-4	2.4	7.4	0.40	5	1-12 UNF / M25x1.5	0.420

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

SC²25 to SC²190

Piston tube design for maximum energy absorption


Self-Compensating, Piston Tube Technology Energy capacity 89 in-lbs/Cycle to 274 in-lbs/Cycle

Stroke 0.32 in to 0.47 in

Soft damping, but enormous capacity: The range of ,soft contact' absorbers SC²25 to SC²190 extends from thread size M10 to M14 and covers effective weight ranges of 2.2 to 3,400 lbs (1 kg to 1,550 kg). All models are characterised by high energy absorption and they also unite the piston tube technology with the diaphragm seal perfected by ACE. This enables direct installation as end position damping in pneumatic cylinders at 72 to 102 psi (5 to 7 bar) or applications where deceleration needs to take place close to the pivot point.

They are maintenance-free, have an integrated positive stop and are mountable in any position. The option of a side load adapter allows impact angles of up to 25°. They offer soft contact deceleration where initial impact reaction forces are very low, with the advantages of self-compensation to react to changing energy conditions, without adjustment.

Thanks to their robust design and their durability, these miniature shock absorbers can be used for a wide range of applications. Designers mainly use them for pick and place systems, pneumatic rotary modules and in automation applications.

Technical Data

Energy capacity: 89 in-lbs/Cycle to

274 in-lbs/Cycle

Impact velocity range: 0.29 ft/sec to 18.6 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

Mounting: In any position **Positive stop:** Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel; Rolling diaphragm: SC²190: EPDM; Stretch diaphragm: SC²25 and

SC²75: Nitrile

Damping medium: Oil, temperature stable

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Locking systems

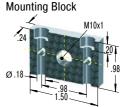
Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the rolling and stretch seals and lead to a shorter service life. Please contact ACE for appropriate solution suggestions.

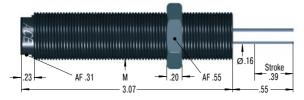
On request: Increased corrosion protection. Special finishes.

Self-Compensating, Piston Tube Technology

SC25M; 5 to 7



250-0315


Locknut

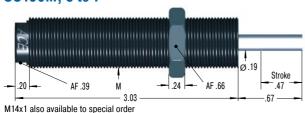
250-0307

SC75M; 5 to 7

250-0317

Locknut

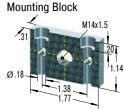
250-0309


Mounting Block

M12x1

24

Ø .18


SC190M; 5 to 7

250-0233 Locknut

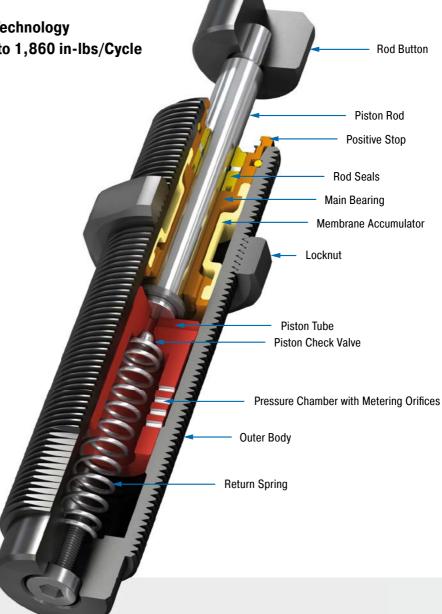
250-0352

Additional accessories, mounting, installation ... starting on page 40.

Performance Effective Weight Max. Energy Capacity Return Force Return Force 1 Side Load We min. We max. Hardness max. Return Time Angle max. Weight **TYPES** in-lbs/cycle in-lbs/h lbs lbs lbs SC25M-5 0.064 89 142,000 2 11 -5 0.90 3.07 0.3 2 M10x1 SC25M-6 142,000 M10x1 89 97 -6 0.90 3.07 0.3 2 0.064 SC25M-7 89 142,000 93 1,100 -7 0.90 3.07 0.3 2 M10x1 0.064 SC75M-5 142 266,000 2 18 -5 0.69 3.40 0.4 2 M12x1 0.104 SC75M-6 142 15 266,000 272 -6 0.69 3.40 0.4 2 M12x1 0.104 SC75M-7 142 -7 3.40 M12x1 266,000 165 1,760 0.69 0.4 2 0.104 SC190M-5 274 443,000 -5 0.97 5 57 0.4 2 M14x1.5 0.130 4 35 SC190M-6 274 443,000 29 309 -6 0.97 5.57 0.4 2 M14x1.5 0.130 274 443,000 300 3,400 -7 0.97 5.57 0.4 M14x1.5 0.130

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

SC2300 to SC2650


Piston tube design for maximum energy absorption

Self-Compensating, Piston Tube Technology Energy capacity 650 in-lbs/Cycle to 1,860 in-lbs/Cycle Stroke 0.59 in to 0.91 in

Added safety with accumulator technology: The larger ,soft contact' models from the SC2300 to SC2650 are available with up to three times the energy absorption compared to similar sizes of standard shock absorbers SC190 to SC925, due to the ACE piston tube specialty. Furthermore, the membrane accumulator serves as a compensation element for the oil displaced in the shock absorber and replaces the standard use of absorber materials. This increases process safety even further.

The shock absorbers, which are perfect for rotary actuators for example, are available in progressively stepped effective weight ranges with an integrated positive stop. They are maintenance-free and ready for direct installation. The side load adapter option allows impact angles of up to 25°. They offer soft contact deceleration where initial impact reaction forces are very low, with the advantages of self-compensation to react to changing energy conditions, without adjustment.

These miniature shock absorbers offer high performance levels with a long service life and are particularly popular for material handling, mounting very close to pivots and automation tasks.

Technical Data

Energy capacity: 650 in-lbs/Cycle to

1,860 in-lbs/Cycle

Impact velocity range: 0.30 ft/sec to 12.0 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

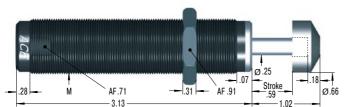
Mounting: In any position **Positive stop:** Integrated

Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel; Accessories: Hardened steel and

corrosion-resistant coating

Damping medium: Oil, temperature stable

Application field: Turntables, Swivel units, Robot arms, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers, Tool machines

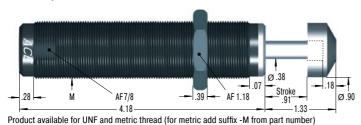

Note: If precise end position data is required consider use of a stop collar.

On request: Increased corrosion protection. Special finishes.

Products for UNF and metric thread available

Self-Compensating, Piston Tube Technology

SC300; 5 to 9



Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0401 Mounting Block 31 3/4-16 UNF .22 Dia. Thru .33 C'Bore x .45 Deep #10-32 Soc. Hd. Screw 1.12 #10-32 Soc. Hd. Screw 1.50 Thru 4 Holes

SC650; 5 to 9

250-0402 Mounting Block Moun 31 1-12 UNF C'Bore x. 45 Deep #10-32 Soc. Hd. Screw 1.12 1.50 1.50 7.50 0.22 0.22 0.22

250-0044 Mounting Block 63 M25x1.5 0.22

Additional accessories, mounting, installation ... starting on page 40.

Performance

	Max. Energy Capacity		E	rrective weig	JΠT						
						Return Force	Return Force	Return	1 Side Load		
	E ₃	E₄	We min.	We max.	Hardness	min.	max.	Time	Angle max.	M	Weight
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs		lbs	lbs	S	۰		lbs
SC300-5	650	400,000	25	100	-5	1.70	4.00	0.2	5	3/4-16 UNF / M20x1.5	0.331
SC300-6	650	400,000	75	300	-6	1.70	4.00	0.2	5	3/4-16 UNF / M20x1.5	0.331
SC300-7	650	400,000	200	400	-7	1.70	4.00	0.2	5	3/4-16 UNF / M20x1.5	0.331
SC300-8	650	400,000	300	1,500	-8	1.70	4.00	0.2	5	3/4-16 UNF / M20x1.5	0.331
SC300-9	650	400,000	700	4,300	-9	1.70	4.00	0.2	5	3/4-16 UNF / M20x1.5	0.331
SC650-5	1,860	600,000	50	250	-5	2.40	7.30	0.3	5	1-12 UNF / M25x1.5	0.684
SC650-6	1,860	600,000	200	800	-6	2.40	7.30	0.3	5	1-12 UNF / M25x1.5	0.684
SC650-7	1,860	600,000	700	2,400	-7	2.40	7.30	0.3	5	1-12 UNF / M25x1.5	0.684
SC650-8	1,860	600,000	1,700	5,800	-8	2.40	7.30	0.3	5	1-12 UNF / M25x1.5	0.684
SC650-9	1,860	600,000	4,000	14,000	-9	2.40	7.30	0.3	5	1-12 UNF / M25x1.5	0.684

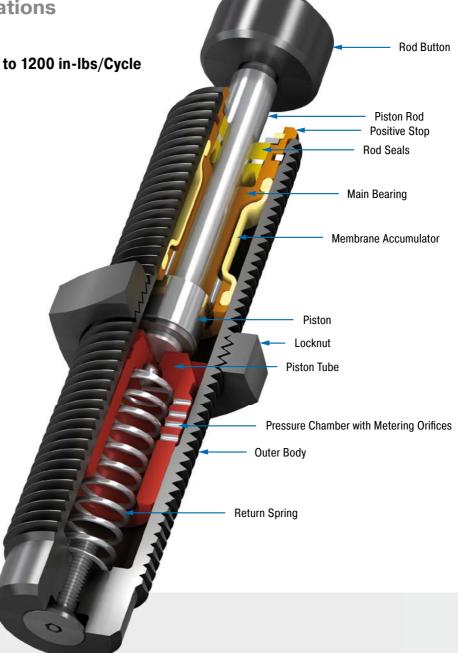
¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

SC25-HC to SC650-HC

Miniature self compensating shocks for high-speed applications

Self-Compensating

Energy capacity 20 in-lbs/Cycle to 1200 in-lbs/Cycle


Stroke 0.16 in to 0.59 in

ACE Controls SC25-HC to SC650-HC High-Cycle shock absorbers are engineered for high-speed equipment applications. These rugged performers are ideal for the packaging industry. They offer a short stroke, quick time through stroke and quick rod-ready time. In addition, these dependable self-compensating miniatures are capable of rapid repeat strokes. The result is faster cycling for your equipment and gains in production time for you.

Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These miniature, self-compensating shock absorbers provide high-speed performance and reliability in a compact footprint.

Applications include: Packaging equipment, slides, rotary actuators, small and medium robotics, machine tools, pick and place operations and more.

Technical Data

Energy capacity: 20 in-lbs/Cycle to

1200 in-lbs/Cycle

Impact velocity range: 0.09 ft/sec to

14.60 ft/sec

Operating temperature range: 32 °F to

150 °F

Mounting: In any position **Positive stop:** Integrated

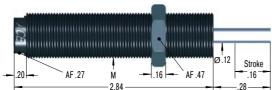
Material: Outer body: Steel corrosion-resistant coating; Main bearing: Brass; Piston rod: Steel hardened; Locknut, Accessories: Steel; Rolling diaphragm: Rubber (EPDM); Stretch

diaphragm: Rubber (nitrile)

Damping medium: SF 96-500 and others

Application field: Linear slides, Tool machines, Handling modules, Production

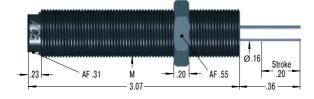
Note: If precise end position is required, consider use of the optional stop collar.

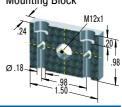

Safety information: External materials in the surrounding area can attack the accumulator and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to 102 psi.

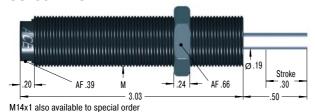
On request: Food grade oils, special threads

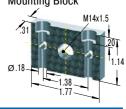
available on request.

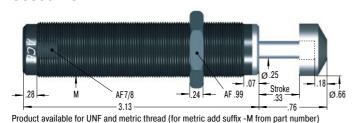
Self-Compensating

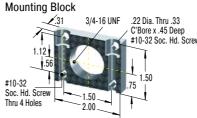

SC25M-HC

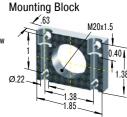

250-0307

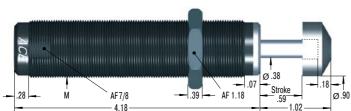

SC75M-HC


250-0309 Mounting Block

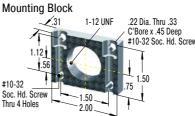

SC190M-HC


250-0352 Mounting Block

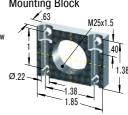

SC300-HC


250-0401

250-0353 Mounting Bloc



SC650-HC



Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0402

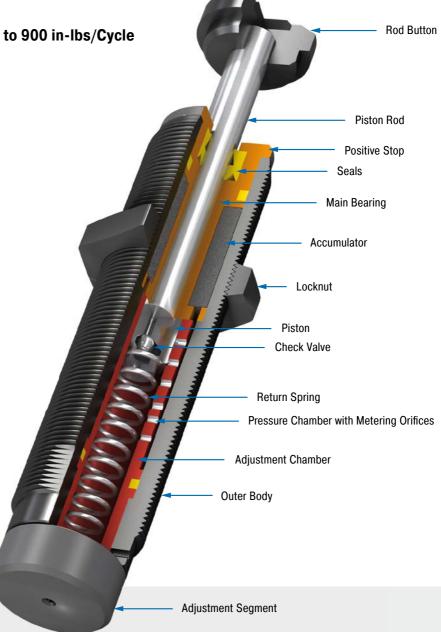
250-0044 Mounting Block

Additional accessories, mounting, installation ... starting on page 40.

Performance										
	Max. Ener	gy Capacity	Effectiv	ve Weight						
					Return	Return		1 Side Load		
TYPES	E ₃ in-lbs/cycle	Energy capacity in-lbs/h	We min. Ibs	We max. Ibs	Force min.	Force max. Ibs	Return Time s	Angle max.	М	Weight Ibs
SC25M-5-HC	20	142,000	2	11	1.98	3.08	0.2	2	M10x1	0.066
SC25M-6-HC	20	142,000	9	97	1.98	3.08	0.2	2	M10x1	0.066
SC25M-7-HC	20	142,000	93	1,100	1.98	3.08	0.2	2	M10x1	0.066
SC75M-5-HC	75	266,000	2	18	1.94	3.40	0.3	2	M12x1	0.099
SC75M-6-HC	75	266,000	15	272	1.94	3.40	0.3	2	M12x1	0.099
SC75M-7-HC	75	266,000	165	1,760	1.94	3.40	0.3	2	M12x1	0.099
SC190M-5-HC	175	443,000	4	35	2.67	5.57	0.3	2	M14x1.5	0.130
SC190M-6-HC	175	443,000	29	309	2.67	5.57	0.3	2	M14x1.5	0.130
SC190M-7-HC	175	443,000	300	3,400	2.67	5.57	0.3	2	M14x1.5	0.130
SC300-5-HC	650	400,000	25	100	2.63	3.91	0.2	5	3/4-16 UNF / M20x1.5	0.362
SC300-6-HC	650	400,000	75	300	2.63	3.91	0.2	5	3/4-16 UNF / M20x1.5	0.362
SC300-7-HC	650	400,000	200	400	2.63	3.91	0.2	5	3/4-16 UNF / M20x1.5	0.362
SC300-8-HC	650	400,000	300	1,500	2.63	3.91	0.2	5	3/4-16 UNF / M20x1.5	0.362
SC300-9-HC	650	400,000	700	4,300	2.63	3.91	0.2	5	3/4-16 UNF / M20x1.5	0.362
SC650-5-HC	1,200	600,000	50	250	4.94	8.30	0.2	5	1-12 UNF / M25x1.5	0.695
SC650-6-HC	1,200	600,000	200	800	4.94	8.30	0.2	5	1-12 UNF / M25x1.5	0.695
SC650-7-HC	1,200	600,000	700	2,400	4.94	8.30	0.2	5	1-12 UNF / M25x1.5	0.695
SC650-8-HC	1,200	600,000	1,700	5,800	4.94	8.30	0.2	5	1-12 UNF / M25x1.5	0.695
SC650-9-HC	1,200	600,000	4,000	14,000	4.94	8.30	0.2	5	1-12 UNF / M25x1.5	0.695

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

MA30 to MA900


Stepless adjustment

Adjustable
Energy capacity 31 in-lbs/Cycle to 900 in-lbs/Cycle
Stroke 0.28 in to 1.58 in

The miniature shock absorbers from the MA30 to MA900 product family can be adjusted and precisely adapted to your requirements. For example, the MA150 displays the rolling diaphragm technology from the MC150 to MC600 family and offers all of the advantages of this technology, such as use in pressure chambers. Thanks to long strokes (including 1.57 in on the MA900) lower reaction forces result, which provide a soft damping characteristic.

All variations of these units are maintenancefree, ready-to-install machine elements and have an integrated positive stop. They provide the best service where application data changes, where the calculation parameters are not clear or where maximum flexibility in the possible usage is required.

These adjustable miniature shock absorbers from ACE can be used to precisely meet the customer's application needs and are therefore found everywhere in industrial, automation and machine engineering and many other applications.

Technical Data

Energy capacity: 31 in-lbs/Cycle to

900 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 14.6 ft/sec. Other speeds on request.

Operating temperature range: 32 °F to

150 °F

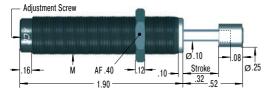
Mounting: In any position **Positive stop:** Integrated

Adjustment: Hard impact at the start of stroke, adjust the ring towards 9 or PLUS. Hard impact at the end of stroke, adjust the ring

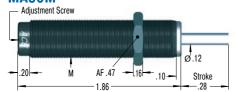
towards 0 or MINUS.

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel

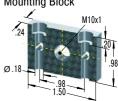
Damping medium: Oil, temperature stable **Application field:** Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Automatic machinery, Tool machines, Locking systems

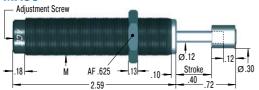

Note: If precise end position data is required consider use of a stop collar. Shock absorber is preset at delivery in a neutral position between hard and soft.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

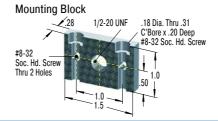

On request: Nickel-plated or other special options available to special order. Models without rod end button.

Adjustable

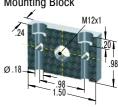

MA30M


MA50M

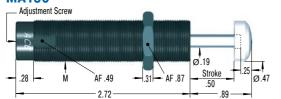
250-0307 Mounting Block



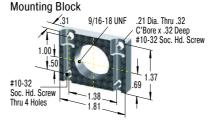
MA35



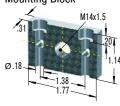
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0308

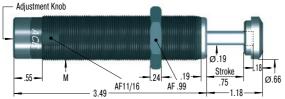
250-0309 Mounting Block



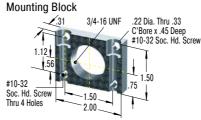
MA150



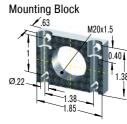
Product available for UNF and metric thread (for metric add suffix -M from part number) M14x1 also available to special order. Standard shock does not include button.


250-0318

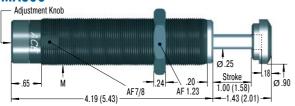
250-0352 Mounting Block



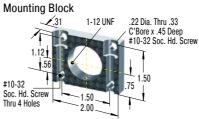
MA225



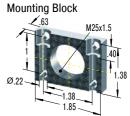
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0401

250-0353



MA600



Product available for UNF and metric thread (for metric add suffix -M from part number) Dimensions for MA900M in ().

250-0402

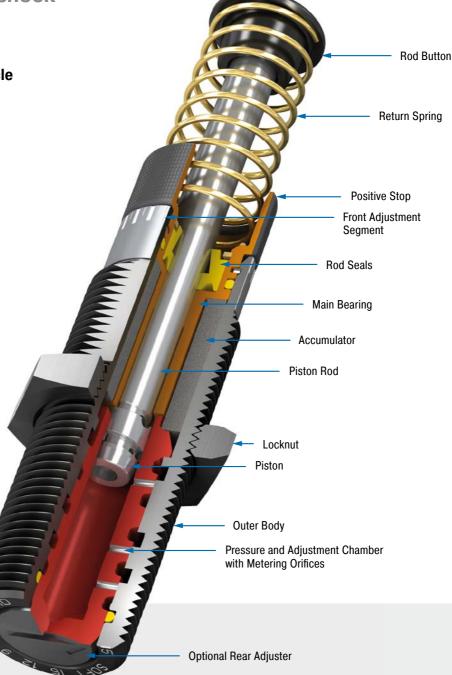
250-0044

Additional accessories, mounting, installation ... starting on page 40.

Performance

	Max. Energ	y Capacity	Effectiv	e Weight						
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	We min. Ibs	We max.	Return Force min. Ibs	Return Force max. Ibs	Return Time s	¹ Side Load Angle max.	М	Weight Ibs
MA30M	31	50,000	0.5	31	1.16	1.57	0.3	2	M8x1	0.029
MA50M	50	120,000	10	45	0.47	1.80	0.3	2	M10x1	0.055
MA35	35	53,000	13	125	1.20	2.60	0.2	2	1/2-20 UNF / M12x1	0.095
MA150	200	300,000	2	240	0.70	1.20	0.4	2	9/16-18 UNF / M14x1.5	0.135
MA225	300	400,000	5	500	1.05	2.15	0.1	2	3/4-16 UNF / M20x1.5	0.381
MA600	600	600,000	20	3,000	2.40	6.87	0.2	2	1-12 UNF / M25x1.5	0.776
MA900	900	800.000	30	4.500	2.40	7.40	0.4	1	1-12 UNF / M25x1.5	0.913

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.


3/8x1

Miniature adjustable shock delivers convenience

Adjustable Energy capacity 600 in-lbs/Cycle Stroke 1 in

ACE Controls 3/8x1" bore adjustable miniature shock absorber offers high energy capacity and a wide effective weight range for handling a variety of applications. A unique feature of the multi-orifice 3/8x1" bore is the optional rear slot adjuster. Adjustment can be made by turning the front adjuster to the preferred setting, or by turning the rear slot adjuster if desired.

Available with side or rear adjustment, these 1" bore shock absorbers provide performance and convenience in one reliable package. Applications include: Slides, material handling equipment, robotics,machine tools, pick and place systems, packaging equipment and more

Technical Data

Energy capacity: 600 in-lbs/Cycle Impact velocity range: 1.6 ft/sec to 15 ft/sec

Operating temperature range: 10 $^{\circ}\text{F}$ to 150 $^{\circ}\text{F}$

Mounting: In any position. Clevis mounting available (NA 3/8x1)

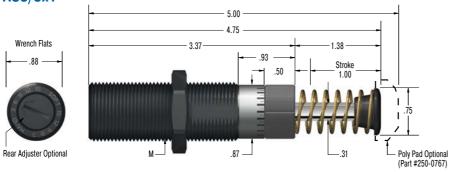
Adjustment: Adjustment can be made by turning the front adjuster to the preferred setting, or by turning the rear slot adjuster if desired.

Material: Outer body, Accessories: Steel corrosion-resistant coating; Main bearing, Rod end button: Steel hardened; Piston rod: Steel hardened and chrome plated; Return spring: Steel; Locknut: Zinc plated steel

Damping medium: American 46

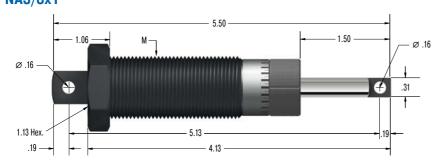
Application field: Linear slides, Transport industry, Tool machines, Handling modules, Production plants

Note: Maximum side load depends on application. For additional information contact ACE Controls' Applications Department. Lock nut included with each shock absorber.


Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Increased corrosion protection. Special finishes. Models without rod end button also available on request.

Adjustable





250-0402 Mounting Block 31 1-12 UNF .22 Dia. Thru .33 C'Bore x. 45 Deep #10-32 Soc. Hd. Screw

#10-32 Soc. Hd. Screw Thru 4 Holes

NA3/8x1

Accessories, mounting, installation ... starting on page 40.

Performanc	е									
	Max. Ener	gy Capacity	Effectiv	e Weight						
					Return Force	Return Force		1 Side Load		
	E ₃	Energy capacity	We min.	We max.	min.	max.	Return Time	Angle max.	М	Weight
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs	lbs	lbs	s	•		lbs
AS3/8X1	600	600,000	10	1,250	6	11	0.03	5	1-12 UNF	0.437
NA3/8x1	600	600,000	10	1,250	6	11	0.03	5	N/A	0.437

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

Shock Absorber Type	¹ Locknut	² Stop Collar	Mounting Block	³ Side Load Adaptor
Thread M5x0.5				
MC5M	0801-001	-	-	-
Thread M6x0.5 MC9M	250-0716			
MOSW	250-0710	-	_	-
Thread M8x1				
MA30M	250-0482	_	-	250-0146
MC10M	250-0482	_	_	250-0141
MC30M	250-0482	-	-	250-0146
Thread M10x1	050 0045	050.0400	050 0007	050 0500
MA50M	250-0315	250-0408	250-0307	250-0562
MC25M	250-0315	250-0408	250-0307	250-0562
SC25M; 5 to 7 SC25M-HC	250-0315	250-0408	250-0307	-
JUZJIVI-TIU	250-0315	250-0408	250-0307	-
Thread M12x1				
MA35M	250-0317	250-0409	250-0309	250-0760
MC75M	250-0317	250-0409	250-0309	250-0760
SC75M; 5 to 7	250-0317	250-0409	250-0309	250-0145
SC75M-HC	250-0317	250-0409	250-0309	-
Thread M14x1.5	050 0000	050 0070	050 0050	050 0550
MA150M	250-0233	250-0272	250-0352	250-0558
MC150M	250-0233 250-0441	250-0272 250-0243	250-0352	250-0558
MC150M-V4A PMCN150M	250-0233	250-0245	250-0255 250-0352	<u>-</u>
PMCN150M-V4A	250-0255	_ _	250-0352	_ _
SC190M; 0 to 4	250-0233	250-0272	250-0255	250-0080
SC190M; 5 to 7	250-0233	250-0272	250-0352	250-0558
SC190M-HC	250-0233	250-0272	250-0352	-
Thread M20x1.5				
MA225M	250-0207	250-0410	250-0353	250-0081
MC225M	250-0207	250-0410	250-0353	250-0559
MC225M-V4A	250-0442	250-0253	250-0434	-
PMCN225M	250-0207	_	250-0353	-
PMCN225M-V4A	250-0442	-	250-0434	-
SC300M; 0 to 4	250-0207	250-0410	250-0353	250-0081
SC300M; 5 to 9 SC300M-HC	250-0207 250-0207	250-0410 250-0410	250-0353 250-0353	-
Thread M25x1.5	050 0040	050 0700	050 0044	
AS3/8x1M	250-0040	250-0766	250-0044	— 250,0000
MAGOOM	250-0040	250-0276	250-0044	250-0082
MA900M MC600M	250-0040 250-0040	250-0276 250-0276	250-0044 250-0044	250-0082 250-0560
MC600M-V4A	250-0443	250-0276	250-0444	
PMCN600M	250-0443	250-0254 —	250-044	- -
PMCN600M-V4A	250-0443	<u>-</u>	250-0044	_ _
SC650M; 0 to 4	250-0443	250-0276	250-0440	250-0082
SC650M; 5 to 9	250-0040	250-0276	250-0044	_
		-00 OL10		
SC650M-HC	250-0040	250-0276	250-0044	_

¹ Additional special options: Locknut 205-0362 for the MC10ME (extra fine thread), locknut 250-0232 for the MA/MC150E (extra fine thread), locknut 250-0239 for the MC600ML (extra fine thread).

Dimensions can be found on the corresponding accessories pages.

² Additional special options: Stop Collar 250-0263 for the MC600ML (extra fine thread).

³ Only mountable on units without button. Remove the button from the shock absorber, if there's one fitted! The following side load adaptors fit -880 model shock absorbers: 250 -0080, -0081, -0082, -0141, -0145, -0562, -0760, -0762 and -0763.

Selection Chart

Steel Shroud	Steel Button	Steel/Urethane Button	Nylon Button	Page
Thread M5x0.5				
-	-	-	-	44
Thread M6x0.5	_	_	_	44
Thread M8x1				
250-0832	-	250-0764	-	44
250-0833	-	_ 250.0764	-	44
250-0832	-	250-0764	-	44
Thread M10x1				
250-0834	250-0124	-	_	44
250-0834	250-0124	250-0094	_	44
250-0835	250-0175	-	-	44
250-0835	250-0175	-	-	44
Thread M12x1				
250-0836	250-0786	250-0094	_	45
250-0836	250-0786	250-0094	_	45
250-0837	250-0174	-	-	45
250-0837	250-0174	-	_	45
Thread M14x1.5				
250-0733	250-0111	250-0095	_	45
250-0733	250-0111	250-0095	250-0753	45
-	-	-	250-0753	45
_	-	-	_	45
-	-	-	-	45
250-0785	included	250-0096	_	45
250-0733	250-0111	250-0095	_	45
250-0733	250-0111	250-0095	-	45
Thread M20x1.5		050 0000		
250-0734	included	250-0098	-	46
250-0170	250-0112	250-0097	250-0754	46
- -	- -	- -	250-0754 —	46 46
_ _	-	-	-	46
250-0734	included	250-0098	_	46
250-0734	included	250-0105	_	46
250-0734	included	250-0105	-	46
Thread M25x1.5		050 0000		
- 050 0705	— included	250-0099	_	47 47
250-0765 250-0765	included included	250-0100 250-0100	<u>-</u>	47 47
250-0765 250-0171	10721-000	250-0100	_ 250-0755	47 47
250-0171	10721-000		250-0755	47
- -	-	- -	250-0755 —	47
-	-	-	-	47
250-0765	included	250-0100	_	47
250-0171	included	250-0099	_	47
250-0171	included	250-0099	_	47
-	included	250-0100	-	47

Selection Chart

Shock Absorber Type	Locknut	Stop Collar	Mounting Block	¹ Side Load Adaptor
Thread 3/8-32 UNF				
MC25	250-0404	250-0406	250-0306	-
Thread 1/2-20 UNF				
MA35	250-0405	250-0407	250-0308	-
MC75	250-0405	250-0407	250-0308	250-0762
Thread 9/16-18 UNF				
MA150	250-0231	250-0271	250-0318	250-0554
MC150	250-0231	250-0271	250-0318	250-0554
SC190; 0 to 4	250-0231	250-0271	250-0318	-
Thread 3/4-16 UNF				
MA225	250-0399	250-0403	250-0401	250-0561
MC225	250-0399	250-0403	250-0401	250-0561
SC300; 0 to 4	250-0399	250-0403	250-0401	-
SC300; 5 to 9	250-0399	250-0403	250-0401	-
SC300-HC	250-0399	250-0403	250-0401	-
Thread 1-12 UNF				
AS3/8x1	250-0400	250-0774	250-0402	_
MA600	250-0400	250-0275	250-0402	_
MA900	250-0400	250-0275	250-0402	_
MC600	250-0400	250-0275	250-0402	250-0763
NA3/8x1	250-0400	250-0774	250-0402	_
SC650; 0 to 4	250-0400	250-0275	250-0402	-
SC650; 5 to 9	250-0400	250-0275	250-0402	-
SC650-HC	0801-041	250-0275	250-0402	-
SC925; 0 to 4	250-0400	250-0275	250-0402	-

¹ Only mountable on units without button. Remove the button from the shock absorber, if there's one fitted!

The following side load adaptors fit -880 model shock absorbers: 250 -0080, -0081, -0082, -0141, -0145, -0562, -0760, -0762 and -0763.

Dimensions can be found on the corresponding accessories pages.

Selection Chart

Steel Shroud	Steel Button	Steel/Urethane Button	Nylon Button	Page
Thread 3/8-32 UNF				
250-0834	250-0124	250-0094	_	48
Thread 1/2-20 UNF				
_	250-0786	250-0094	_	48
250-0836	250-0786	250-0094		48
Thread 9/16-18 UNF				
250-0733	250-0111	250-0095		48
250-0785	250-0111	250-0095	250-0753	48
250-0733	included	250-0096	-	48
Thread 3/4-16 UNF				
250-0734	included	250-0098	_	49
250-0170	250-0112	250-0097	250-0754	49
250-0734	included	250-0098	_	49
250-0734	included	250-0105	_	49
250-0734	included	250-0105	_	49
Thread 1-12 UNF				
-	included	250-0099	-	49
250-0765	included	250-0100	-	49
	included	250-0100	-	49
250-0171	10721-000	250-0099	250-0755	49
-	included	250-0099	-	49
250-0765	included	250-0100	_	49
250-0171	included	250-0099	-	49
250-0171	included	250-0099	_	49
_	included	250-0100	_	49

M5x0.5

0801-001

Locknut

M6x0.5

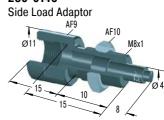
250-0716

Locknut

M8x1

250-0482

Locknut


250-0362

250-0141

250-0146

250-0832

Steel Shroud

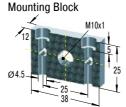
250-0833

250-0764

Steel/Urethane Button

M10x1

250-0315


Locknut

250-0408

250-0307

250-0562

250-0834

Steel Shroud

250-0835

250-0124

250-0175

250-0094

Mounting, installation, ... see pages 50 to 51.

M12x1

250-0317

250-0409 Stop Collar ø 15

250-0309 Mounting Block

250-0760

250-0786

M14x1

250-0232

250-0272

250-0558

250-0095

250-0096

Steel/Urethane Button

250-0753

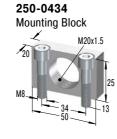
E₂max = 14 Nm

Mounting, installation, ... see pages 50 to 51.

Issue 04.2018 - Specifications subject to change

M20x1.5

250-0207 Locknut



M25x1.5

3/8-32 UNF

250-0404

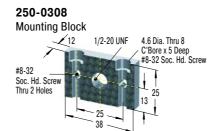
Locknut

250-0406 Stop Collar 3/8-32 UNF

250-0306 Mounting Block 3/8-32 UNF 4.6 Dia. Thru 8 C'Bore x 5 Deen #8-32 Soc. Hd. Screw Soc. Hd. Screw Thru 2 Holes

250-0124

Steel Button

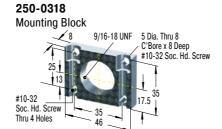

1/2-20 UNF

250-0405

Locknut

250-0786

Steel Button


9/16-18 UNF

250-0231

250-0733

Steel Shroud

250-0111

250-0095

Steel/Urethane Button

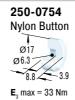
250-0096

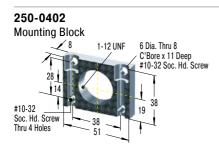
Steel/Urethane Button

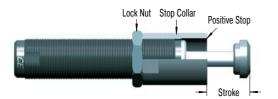
E₂max = 14 Nm

Mounting, installation, ... see pages 50 to 51.

3/4-16 UNF




1-12 UNF



Stop Collar

All ACE miniature shock absorbers have an integrated positive stop. An optional stop collar can be added if desired to give fine adjustment of final stopping position.

Mounting Block

This versatile block can be mounted to a horizontal or vertical surface. The shock is screwed into the center threaded hole and secured with a locknut.

Mounting information

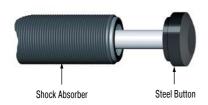
Mounting block only. Bolts supplied separately.

Delivery

One locknut is included with each shock.

Steel Shroud

Grinding beads, sand, welding splatter, paints, adhesives, etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.


Ordering information

The steel shroud can only be installed onto a shock absorber without rod end button.

For part number MA, MC, SC please order with "-880" suffix. Part numbers MA150, MC150 to MC600 and SC25 to SC190 5-7 are supplied without a button.

Safety information

When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled.

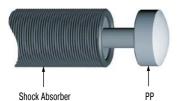
Steel Button

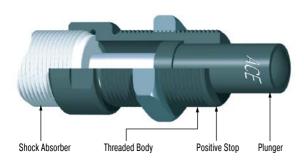
The buttons are made of an oxidized steel, and offer durability beyond nylon or urethane options. They fit easily onto the piston rod of the corresponding shock absorber. Steel buttons are included on most MA and SC models. Options are available all other models that do not include the standard steel button.

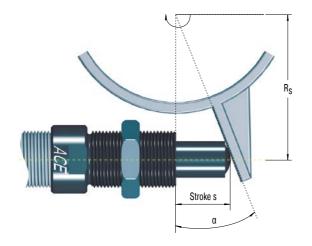
Mounting information

Depending on the model, these buttons may be additionally secured with an O-Ring and LOCTITE.

Steel/Urethane Button


These impact buttons made of urethane offer all advantages of the nylon button in terms of reducing noise and wear. They fit easily onto the piston rod of the corresponding shock absorber. The impact buttons must additionally be secured with LOCTITE.


Ordering information


New orders can include this button already installed by adding -BP to the part number.

Please refer to the accessories table on pages 40 to 43 to see which shock absorber types the steel urethane buttons are available for.

Formulae:

$$\alpha = tan^{-1} \left(\frac{s}{R_s} \right) \qquad \qquad R_{s \; min} = \; \frac{s}{tan \; \alpha \; max}$$

Example:

$$s = 0.025 \text{ m} \qquad \qquad \alpha \text{ max} = 25^{\circ} \text{ (adapter 250-0763)}$$

$$R_s = 0.1 \text{ m}$$

$$\alpha = tan^{-1} \left(\frac{0.025}{0.1} \right)$$
 $R_{s min} = \frac{0.025}{tan 25}$

$$\alpha = 14.04^{\circ}$$
 $R_{s min} = 0.054 m$

$$\alpha$$
 = side load angle $^{\circ}$ R_s = mounting radius m α max = max. angle $^{\circ}$ $R_{s min}$ = min. possible s = absorber stroke m mounting radius m

Nylon Button

While the use of industrial shock absorbers provides a considerable reduction in noise levels, adding impact buttons made of glass fiber reinforced nylon reduces noise levels even further. Additionally, use of a nylon button drastically reduces wear to the impact surface. These nylon buttons are available for the MA150 and the MC150 to MC600 shock absorber series.

Mounting information

The buttons are fitted by pressing onto the piston rod. We recommend to additionally fix the nylon button with LOCTITE.

Side Load Adaptor

Rotating impact motion causes high side load forces on the piston rod. This increases bearing wear and possibly results in rod breakage or bending. With side load impact angles of more than 3° the operation lifetime of the shock absorber reduces rapidly due to increased wear of the rod bearings. The optional side load adaptor provides long lasting solution.

Ordering information

The side load adaptor can only be installed onto a shock absorber without rod end button.

Material

Threaded body and plunger: Hardened high tensile steel, hardened 610 HV1

Mounting information

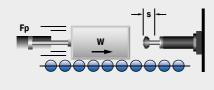
Secure the side load adaptor with LOCTITE or locknut on the shock absorber. For material combination plunger/impact plate use similar hardness values. We recommend that you install the shock absorber/side load adaptor using the thread on the side load adaptor.

Safety information

Maximum angle:

250-0141, 250-0145, 250-0146, 250-0562, 250-0762 = 12.5° 250-0554, 250-0561, 250-0763 = 25°

By repositioning the centre of the stroke of the side load plunger to be at 90 degrees to the piston rod, the side load angle can be halved. The use of an external positive stop due to high forces encountered is required.


Application Examples

MC25

Constant deceleration force

ACE miniature shock absorbers are the right alternative. This pneumatic module for high precision, high speed motion intentionally abandoned pneumatic end-of-travel damping. The compact miniature shock absorbers of the type MC25H-NB decelerate the linear motion safer and faster when reaching the end-of-travel position. They accept the moving load gently and decelerate it smoothly throughout the entire stroke length. Additional advantages: simpler construction, smaller pneumatic valves, lower maintenance costs as well as reduced compressed air consumption.

Miniature Shock Absorber in compact pneumatic module

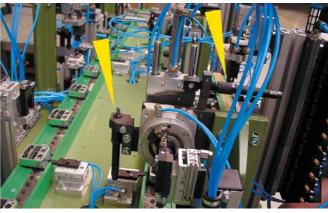
MC225

Obstacle end positions secured

In the case of driving safety training, swinging flags are used to simulate the sudden appearance of obstacles. If the driver reacts too slowly, the flags are swung just as quickly away to avoid damage to the vehicle. In order to protect the end positions of this safety system during to and fro motion, ACE miniature shock absorbers of the type MC225H2 are installed. They come with a special side load adapter for use in this situation. Among other things, this improves the ability of the shock absorber to absorb lateral forces during to and fro motion.

Miniature shock absorbers protect the end positions during driving safety training

Dorninger Hytronics GmbH, 4210 Unterweitersdorf, Austria


SC190

Soft end-of-travel damping on rotary movements

ACE miniature shock absorbers optimize production with minimum expenditure. The cycle rate for an assembly line producing electronic components was increased to 3,600 units/hr. Miniature shock absorbers type SC190-1 decelerate the rapid transfer movements on the production line and using soft damping methods optimize the pick up and set down of components. This soft deceleration technique has increased production and reduced maintenance on the portal and rotary actuator modules. The optional side load adaptor protects the shock absorber from high side load forces and increases the operating lifetime. Using ACE shock absorbers reduces maintenance costs by 50 % and running costs by 20 %, diminishing energy consumption.

Optimised production in the electronics industry Stebie Maschinenbau GmbH, Germany

Industrial Shock Absorbers

Absorbers suited for all loads

ACE industrial shock absorbers work hard. Their application means moving loads are evenly decelerated over the full stroke. The result: the lowest braking force and shortest braking time. The MAGNUM series from ACE is viewed as the reference standard for medium-sized damping technology.

Many innovations such as diaphragm accumulators, long life seals, hardened inner pressure chambers and make a decisive contribution towards extension of the service life. This means that the effective load range can be increased considerably, providing users with more scope with respect to the absorber size and greater utilization of the machine's output. ACE offers a wide range of matching accessories for all absorber series. This eliminates internal production of assembly parts which involves high costs and loss of time.

Page 68

Page 82

Industrial Shock Absorbers

MC33 to MC64 Page 56

Self-Compensating

High energy absorption and robust design

Linear slides, Swivel units, Turntables, Portal systems

MC33-V4A to MC64-V4A Page 60

Self-Compensating, Stainless Steel

Optimum corrosion protection Linear slides, Swivel units, Turntables, Food industry

MC33-HT to MC64-HT Page 64

Self-Compensating

Extreme temperature and high cycle applications

Linear slides, Swivel units, Turntables, Machines and plants

MC33-LT to MC64-LT

Self-Compensating

Extreme temperature and high cycle applications Linear slides, Swivel units, Turntables, Machines and plants

SC33 to SC45 Page 72

Self-Compensating, Piston Tube Technology

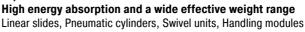
Piston tube design for maximum energy absorption Turntables, Swivel units, Robot arms, Linear slides

MA/ML33 to MA/ML64 Page 76

Adjustable

High energy absorption and progressive adjustment Linear slides, Swivel units, Turntables, Portal systems

SASL1 1/8 Page 80


Adjustable

Low velocity and high effective weight range

Linear slides, Pneumatic cylinders, Swivel units, Handling modules

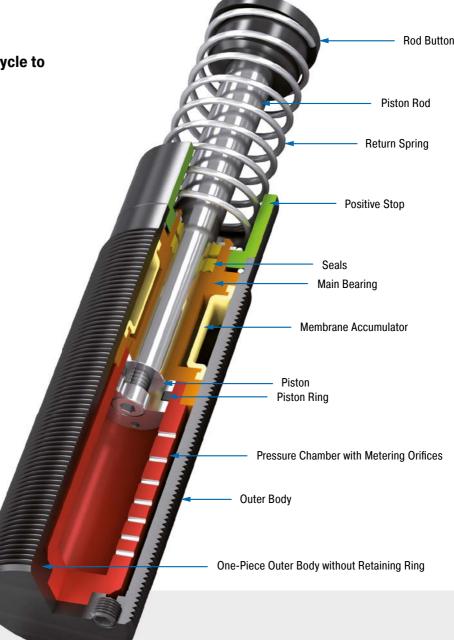
SALD1/2 to SALD1 1/8

SALDN3/4 Page 86

Adjustable

High energy absorption and a wide effective weight range Linear slides, Pneumatic cylinders, Swivel units, Handling modules

MC33 to MC64


High energy absorption and robust design

Self-Compensating Energy capacity 1,505 in-lbs/Cycle to 50,000 in-lbs/Cycle Stroke 0.91 in to 5.91 in

The latest damper technology: The combination of the latest sealing technology, annealed guide bearing and integrated positive stop make these self-compensating shock absorbers from ACE'S MAGNUM range so successful. After all, users benefit from the longer service life of the products, even in the most difficult environments. A continuous outer thread and extensive accessories make their contribution to the success story of the MC33 to MC64.

High energy absorption in a compact design and a wide damping range lead to huge advantages in practice. Alongside generally more compact designs, these small yet very powerful absorbers enable full use of the machine's performance. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers are used in all areas of industrial automation and machine engineering, especially in automation and for gantries.

Technical Data

Energy capacity: 1,505 in-lbs/Cycle to

50,000 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 16.5 ft/sec. Other speeds on request.

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position **Positive stop:** Integrated

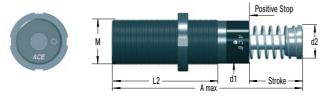
Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plastic-coated steel; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Automatic Transmission Fluid (ATF)

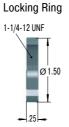
Application field: Linear slides, Swivel units, Turntables, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes, Impact panels, Handling modules

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button. For emergency use only applications and for continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE.

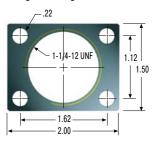
Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.


On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request.

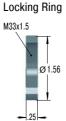
Products for UNF and metric thread available


Self-Compensating

MC33

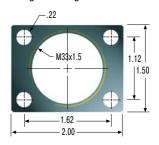

Product available for UNF and metric thread (for metric add suffix -M from part number) M33x1.5, M36x1.5 and M42x1.5 also available to order

250-0038



250-0016

Rectangular Flange



250-0292

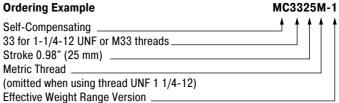
250-0293

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating


Special Models

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

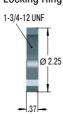
Ordering Example

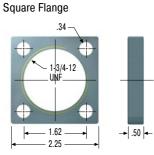
Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	М
MC3325	0.91	5.44	1.15	1.00	3.25	1-1/4-12 UNF / M33x1.5
MC3350	1.91	7.44	1.15	1.00	4.25	1-1/4-12 UNF / M33x1.5

Performance	•											
		Max. Ene	rgy Capacity		Eff	Effective Weight						
			E₄ with	E ₄ with Oil				Return Force	Return Force	Return	3 Side Load Angle	
	1 E ₃	E ₄	Air/Oil Tank	Recirculation	² We min.	² We max.	Hardness	min.	max.	Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs		lbs	lbs	s	۰	lbs
MC3325-0	1,505	670,000	1,100,000	1,500,000	7	24	-0	10.3	19.8	0.03	4	1.12
MC3325-1	1,505	670,000	1,100,000	1,500,000	20	80	-1	10.3	19.8	0.03	4	1.12
MC3325-2	1,505	670,000	1,100,000	1,500,000	68	272	-2	10.3	19.8	0.03	4	1.12
MC3325-3	1,505	670,000	1,100,000	1,500,000	230	920	-3	10.3	19.8	0.03	4	1.12
MC3325-4	1,505	670,000	1,100,000	1,500,000	780	3,120	-4	10.3	19.8	0.03	4	1.12
MC3350-0	2,920	760,000	1,200,000	1,600,000	11	48	-0	9.9	10.3	0.06	3	1.39
MC3350-1	2,920	760,000	1,200,000	1,600,000	40	160	-1	9.9	10.3	0.06	3	1.39
MC3350-2	2,920	760,000	1,200,000	1,600,000	136	544	-2	9.9	10.3	0.06	3	1.39
MC3350-3	2,920	760,000	1,200,000	1,600,000	460	1,840	-3	9.9	10.3	0.06	3	1.39
MC3350-4	2,920	760,000	1,200,000	1,600,000	1,560	6,240	-4	9.9	10.3	0.06	3	1.39

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² The effective weight range limits can be raised or lowered to special order.

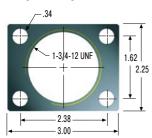
³ For applications with higher side load angles please contact ACE.


MC45

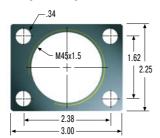


Product available for UNF and metric thread (for metric add suffix -M from part number)

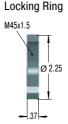
250-0041 Locking Ring



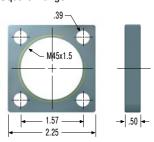
250-0023



250-0024


Rectangular Flange

250-0299 Rectangular Flange



250-0297

250-0298

Square Flange

MC4525M-1

1-3/4-12 UNF / M45x1.5

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

5.72

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating

Special Models

MC4575

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

2.91

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

Self-Compensating ______ 45 for 1-3/4-12 UNF or M45 threads . Stroke 0.98" (25 mm) _____

Metric Thread ______ (omitted when using thread UNF 1-3/4-12)

1.38

Effective Weight Range Version

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
MC4525	0.91	5.69	1.65	1.38	3.72	1-3/4-12 UNF / M45x1.5
MC4550	1.91	7.69	1.00	1.15	4.72	1-3/4-12 UNF / M45x1.5

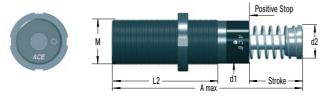
1.65

Performance)											
		Max. Ene	rgy Capacity		Ef	fective Wei	ght					
	1 E ₃	Ε,	E₄ with Air/Oil Tank	E₄ with Oil Recirculation	² We min.	² We max.	Hardness	Return Force min.	Return Force max.	Return Time	³ Side Load Angle max.	Weight
TYPES	in-lbs/cycle	4	in-lbs/h	in-lbs/h	lbs	lbs		lbs	lbs	s	•	lbs
MC4525-0	3,275	950,000	1,400,000	1,700,000	15	59	-0	15.1	22.8	0.03	4	2.49
MC4525-1	3,275	950,000	1,400,000	1,700,000	50	200	-1	15.1	22.8	0.03	4	2.49
MC4525-2	3,275	950,000	1,400,000	1,700,000	170	680	-2	15.1	22.8	0.03	4	2.49
MC4525-3	3,275	950,000	1,400,000	1,700,000	575	2,300	-3	15.1	22.8	0.03	4	2.49
MC4525-4	3,275	950,000	1,400,000	1,700,000	1,950	7,800	-4	15.1	22.8	0.03	4	2.49
MC4550-0	6,550	1,000,000	1,700,000	2,200,000	28	119	-0	15.1	32.2	0.08	3	3.00
MC4550-1	6,550	1,000,000	1,700,000	2,200,000	100	400	-1	15.1	32.2	0.08	3	3.00
MC4550-2	6,550	1,000,000	1,700,000	2,200,000	340	1,360	-2	15.1	32.2	0.08	3	3.00
MC4550-3	6,550	1,000,000	1,700,000	2,200,000	1,150	4,600	-3	15.1	32.2	0.08	3	3.00
MC4550-4	6,550	1,000,000	1,700,000	2,200,000	3,900	15,600	-4	15.1	32.2	0.08	3	3.00
MC4575-0	10,000	1,300,000	2,000,000	2,500,000	44	176	-0	11.7	40.3	0.11	2	3.51
MC4575-1	10,000	1,300,000	2,000,000	2,500,000	150	600	-1	11.7	40.3	0.11	2	3.51
MC4575-2	10,000	1,300,000	2,000,000	2,500,000	510	2,040	-2	11.7	40.3	0.11	2	3.51
MC4575-3	10,000	1,300,000	2,000,000	2,500,000	1,370	6,920	-3	11.7	40.3	0.11	2	3.51
MC4575-4	10,000	1,300,000	2,000,000	2,500,000	5,850	23,400	-4	11.7	40.3	0.11	2	3.51

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

9.69

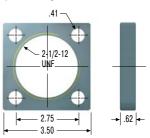
² The effective weight range limits can be raised or lowered to special order.


³ For applications with higher side load angles please contact ACE.

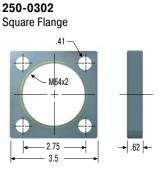
Products for UNF and metric thread available

Self-Compensating

MC64



Product available for UNF and metric thread (for metric add suffix -M from part number) 5.91" stroke model does not include stop collar.


Positive stop is provided by the rod button (Ø 2.36") and a stop block.

250-0042 Locking Ring 2-1/2-12 UNF

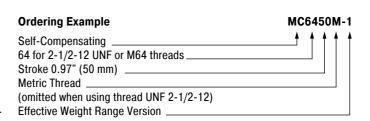
250-0028 Square Flange

250-0301 Locking Ring

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models


MC: Self-Contained with return spring, self-compensating

Special Models

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	М
MC6450	1.91	8.85	2.37	1.90	5.5	2-1/2-12 UNF / M64x2
MC64100	3.91	12.85	2.37	1.90	7.5	2-1/2-12 UNF / M64x2
MC64150	5.91	17.73	2.37	1.90	9.5	2-1/2-12 UNF / M64x2

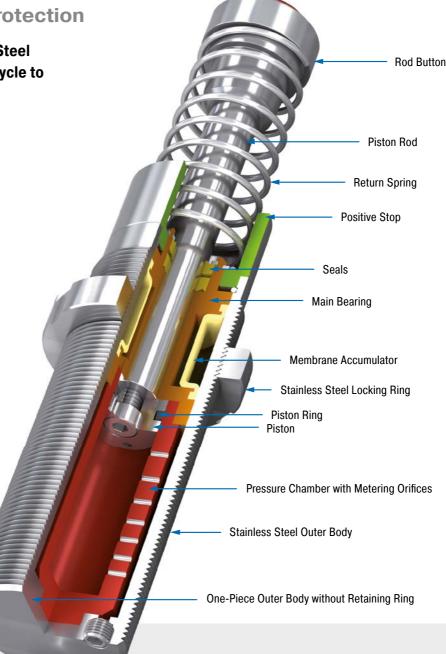
Performance	•											
		Max. Ene	rgy Capacity		Effective Weight							
	1 E ₃	E ₄	E ₄ with Air/Oil Tank	E₄ with Oil Recirculation	² We min.	² We max.	Hardness	Return Force min.	Return Force max.	Return Time	3 Side Load Angle max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs		lbs	lbs	S	•	lbs
MC6450-0	16,550	1,300,000	2,600,000	3,400,000	308	1,190	-0	20.1	34.9	0.12	4	6.39
MC6450-1	16,550	1,300,000	2,600,000	3,400,000	300	1,200	-1	20.1	34.9	0.12	4	6.39
MC6450-2	16,550	1,300,000	2,600,000	3,400,000	1,020	4,080	-2	20.1	34.9	0.12	4	6.39
MC6450-3	16,550	1,300,000	2,600,000	3,400,000	3,460	13,480	-3	20.1	34.9	0.12	4	6.39
MC6450-4	16,550	1,300,000	2,600,000	3,400,000	11,700	46,800	-4	20.1	34.9	0.12	4	6.39
MC64100-0	33,000	1,700,000	3,400,000	4,400,000	154	617	-0	23.5	61.0	0.34	3	8.16
MC64100-1	33,000	1,700,000	3,400,000	4,400,000	600	2,400	-1	23.5	61.0	0.34	3	8.16
MC64100-2	33,000	1,700,000	3,400,000	4,400,000	2,040	8,160	-2	23.5	61.0	0.34	3	8.16
MC64100-3	33,000	1,700,000	3,400,000	4,400,000	6,920	27,680	-3	23.5	61.0	0.34	3	8.16
MC64100-4	33,000	1,700,000	3,400,000	4,400,000	23,400	93,600	-4	23.5	61.0	0.34	3	8.16
MC64150-0	50,000	2,200,000	4,400,000	5,700,000	220	1,014	-0	16.9	82.2	0.48	2	11.25
MC64150-1	50,000	2,200,000	4,400,000	5,700,000	900	3,600	-1	16.9	82.2	0.48	2	11.25
MC64150-2	50,000	2,200,000	4,400,000	5,700,000	3,060	12,240	-2	16.9	82.2	0.48	2	11.25
MC64150-3	50,000	2,200,000	4,400,000	5,700,000	10,380	41,520	-3	16.9	82.2	0.48	2	11.25
MC64150-4	50,000	2,200,000	4,400,000	5,700,000	35,100	140,400	-4	16.9	82.2	0.48	2	11.25

- ¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² The effective weight range limits can be raised or lowered to special order.

³ For applications with higher side load angles please contact ACE.

MC33-V4A to MC64-V4A

Optimum corrosion protection


Self-Compensating, Stainless Steel Energy capacity 1,505 in-lbs/Cycle to 33,000 in-lbs/Cycle

Stroke 0.91 in to 3.91 in

The latest damper technology in stainless steel: The self-compensating industrial shock absorbers MC33 to MC64 from the tried-and-tested and popular MAGNUM range is also available with all outer components made from stainless steel, material AISI 316L (except piston rod). They are filled in the factory with special oil, which meets the permit conditions (NSF-H1) for the food industry.

Just like the standard product family, the MAGNUM stainless steel models are distinguished by their robust, modern sealing technology, high energy absorption in a compact design, integrated positive stop and a wide damping range. Equipped with a PUR head, they are available in thread sizes M33x1.5 to M64x2 with damping strokes up to 3.94 in. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers made of stainless steel from ACE are mainly used in the food, medical, electronics and offshore industries, but also in many other markets.

Technical Data

Energy capacity: 1,505 in-lbs/Cycle to

33,000 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 16.5 ft/sec. Other speeds on request.

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position **Positive stop:** Integrated

Material: Outer body, Main bearing, Accessories, Locking ring: Stainless steel (1.4404, AISI 316L); Piston rod: Hard chrome plated steel; Rod end button: Stainless steel (1.4404, AISI 316L) with elastomer insert; Return spring: Stainless steel **Damping medium:** Special oil NSF-H1 approved

Application field: Linear slides, Swivel units, Turntables, Food industry, Medical technology, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes

Note: Impact button for noise reduction included. For emergency use only applications and for continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please

contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, other special options and special accessories are available on request.

Self-Compensating, Stainless Steel

MC33M-V4A

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating

Special Models

 $\dot{\text{MCA}}$: Air/Oil return without return spring. Use only with external

air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

Ordering Example Self-Compensating Thread Size M33 Stroke 0.98" (25 mm) Effective Weight Range Version Stainless Steel 1.4404/AISI 316L

Dimensions							
	Stroke	A max.	d1	d2	L1	L2	М
TYPES	mm	mm	mm	mm	mm	mm	
MC3325M-V4A	0.91	5.95	1.18	1.15	0.52	3.25	M33x1.5
MC3350M-V4A	1.91	7.96	1.18	1.15	0.52	4.25	M33x1.5

Performance										
	Max. Energ	y Capacity	Ef	fective Wei	ght					
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	¹ We min.	¹ We max.	Hardness	Return Force min. Ibs	Return Force max. Ibs	Return Time s	² Side Load Angle max.	Weight Ibs
MC3325M-0-V4A	1,505	670,000	7	24	-0	10.12	20.23	0.03	4	1.12
MC3325M-1-V4A	1,505	670,000	20	80	-1	10.12	20.23	0.03	4	1.12
MC3325M-2-V4A	1,505	670,000	68	272	-2	10.12	20.23	0.03	4	1.12
MC3325M-3-V4A	1,505	670,000	230	920	-3	10.12	20.23	0.03	4	1.12
MC3325M-4-V4A	1,505	670,000	780	3,120	-4	10.12	20.23	0.03	4	1.12
MC3350M-0-V4A	2,920	760,000	11	48	-0	10.12	30.35	0.06	3	1.39
MC3350M-1-V4A	2,920	760,000	40	160	-1	10.12	30.35	0.06	3	1.39
MC3350M-2-V4A	2,920	760,000	136	544	-2	10.12	30.35	0.06	3	1.39
MC3350M-3-V4A	2,920	760,000	460	1,840	-3	10.12	30.35	0.06	3	1.39
MC3350M-4-V4A	2,920	760,000	1,560	6,240	-4	10.12	30.35	0.06	3	1.39

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

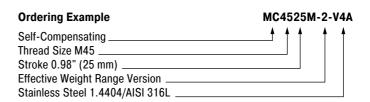
² For applications with higher side load angles please contact ACE.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating


Special Models

MCA: Air/Oil return without return spring. Use only with external

air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

Dimensions							
	Stroke	A max.	d1	d2	L1	L2	М
TYPES	inch	inch	inch	inch	inch	inch	
MC4525M-V4A	0.91	6.48	1.65	1.65	0.76	3.72	M45x1.5
MC4550M-V4A	1.91	8.44	1.65	1.65	0.76	4.72	M45x1.5
MC4575M-V4A	2.91	10.45	1.65	1.65	0.76	5.72	M45x1.5

Performance										
	Max. Energ	y Capacity	Ef	fective Wei	ght					
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	¹ We min.	¹ We max.	Hardness	Return Force min. Ibs	Return Force max. Ibs	Return Time s	² Side Load Angle max.	Weight Ibs
MC4525M-0-V4A	3,275	950,000	15	59	-0	15.1	22.8	0.03	4	2.51
MC4525M-1-V4A	3,275	950,000	50	200	-1	15.1	22.8	0.03	4	2.51
MC4525M-2-V4A	3,275	950,000	170	680	-2	15.1	22.8	0.03	4	2.51
MC4525M-3-V4A	3,275	950,000	575	2,315	-3	15.1	22.8	0.03	4	2.51
MC4525M-4-V4A	3,275	950,000	1,950	7,804	-4	15.1	22.8	0.03	4	2.51
MC4550M-0-V4A	6,550	1,000,000	28	119	-0	15.1	32.2	0.08	3	3.00
MC4550M-1-V4A	6,550	1,000,000	100	400	-1	15.1	32.2	0.08	3	3.00
MC4550M-2-V4A	6,550	1,000,000	340	1,360	-2	15.1	32.2	0.08	3	3.00
MC4550M-3-V4A	6,550	1,000,000	1,150	4,600	-3	15.1	32.2	0.08	3	3.00
MC4550M-4-V4A	6,550	1,000,000	3,900	15,600	-4	11.7	40.3	0.08	3	3.00
MC4575M-0-V4A	10,000	1,300,000	44	176	-0	11.7	40.3	0.11	2	3.51
MC4575M-1-V4A	10,000	1,300,000	150	600	-1	11.7	40.3	0.11	2	3.51
MC4575M-2-V4A	10,000	1,300,000	510	2,040	-2	11.7	40.3	0.11	2	3.51
MC4575M-3-V4A	10,000	1,300,000	1,370	6,920	-3	11.7	40.3	0.11	2	3.51
MC4575M-4-V4A	10,000	1,300,000	5,850	23,400	-4	11.7	40.3	0.11	2	3.51

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² For applications with higher side load angles please contact ACE.

Self-Compensating, Stainless Steel

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating

Special Models

MCA: Air/Oil return without return spring. Use only with external

air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank.

MCN: Self-Contained without return spring

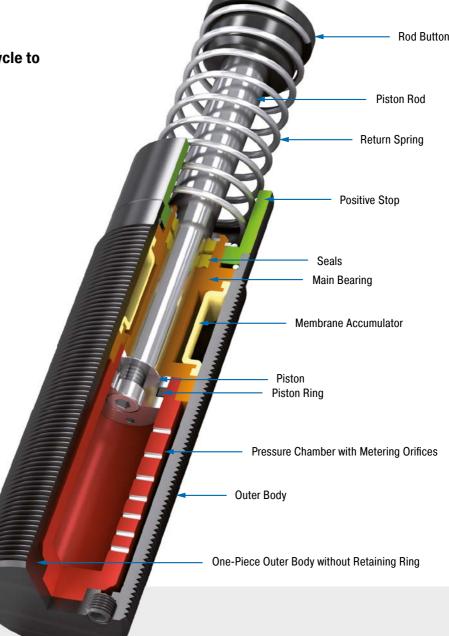
Ordering Example	MC6450M-2-V4A
Self-Compensating	
Thread Size M64	
Stroke 0.97" (50 mm)	
Effective Weight Range Version	
Stainless Steel 1.4404/AISI 316L	

Dimensions							
	Stroke	A max.	d1	d2	L1	L2	М
TYPES	inch	inch	inch	inch	inch	inch	
MC6450M-0-V4A	1.91	9.61	2.36	2.36	0.75	5.5	M64x2
MC64100M-0-V4A	3.91	13.59	2.36	2.36	0.75	7.5	M64x2

Performance										
	Max. Energy Capacity		Ef	fective Wei	ght					
	_	_				Return Force	Return Force	- · -	² Side Load Angle	
TYPES	E ₃	E ₄	¹ We min.	1 We max.	Hardness	min. Ibs	max.	Return Time	max.	Weight
TTPES	in-lbs/cycle	in-lbs/h	lbs	lbs		IDS	lbs	S		lbs
MC6450M-0-V4A	16,550	1,300,000	308	1,190	-0	20.1	34.9	0.12	4	6.39
MC6450M-1-V4A	16,550	1,300,000	300	1,200	-1	20.1	34.9	0.12	4	6.39
MC6450M-2-V4A	16,550	1,300,000	1,020	4,080	-2	20.1	34.9	0.12	4	6.39
MC6450M-3-V4A	16,550	1,300,000	3,460	13,480	-3	20.1	34.9	0.12	4	6.39
MC6450M-4-V4A	16,550	1,300,000	11,700	46,800	-4	20.1	34.9	0.12	4	6.39
MC64100M-0-V4A	33,000	1,700,000	154	617	-0	23.5	61.0	0.34	3	8.16
MC64100M-1-V4A	33,000	1,700,000	600	2,400	-1	23.5	61.0	0.34	3	8.16
MC64100M-2-V4A	33,000	1,700,000	2,040	8,160	-2	23.5	61.0	0.34	3	8.16
MC64100M-3-V4A	33,000	1,700,000	6,920	27,680	-3	23.5	61.0	0.34	3	8.16
MC64100M-4-V4A	33,000	1,700,000	23,400	93,600	-4	23.5	61.0	0.34	3	8.16

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² For applications with higher side load angles please contact ACE.

MC33-HT to MC64-HT


Extreme temperature and high cycle applications

Self-Compensating Energy capacity 1,505 in-lbs/Cycle to 33,000 in-lbs/Cycle Stroke 0.91 in to 3.91 in

Greater application range: just like all MAGNUM types from the product family MC33 to MC64, the HT (high temperature) industrial shock absorbers are also made from one solid piece. They use special seals and fluids. This means that these versions can even be used at extreme temperatures of 32 °F to +302 °F in order to safely and reliably damp masses and absorb 100 % of the kinetic energy.

These ready-to-install machine elements are recommended even under the most unfavorable conditions. Additional benefits are their robust, innovative sealing technology, high energy absorption in a compact design, fixed positive stop and a wide damping range. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

Designed for use in extreme temperature ranges, these self-compensating industrial shock absorbers are suitable almost anywhere in plant, industrial, automation and machine engineering.

Products for UNF and metric thread

available

Technical Data

Energy capacity: 1,505 in-lbs/Cycle to

33,000 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 16.5 ft/sec. Other speeds on request. Operating temperature range: 32 °F to

302 °F

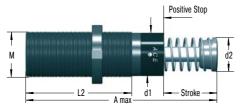
Mounting: In any position Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Synthetic high temperature oil

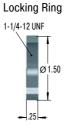
Application field: Linear slides, Swivel units, Turntables, Machines and plants, Tool machines, Machining centers, Z-axes

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

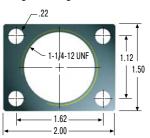

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request. Adjustable HT and LT shock absorbers.

Products for UNF and metric thread available


Self-Compensating

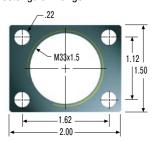
MC33-HT


Product available for UNF and metric thread (for metric add suffix -M from part number) M33x1.5, M36x1.5 and M42x1.5 also available to order

250-0038

250-0016

Rectangular Flange



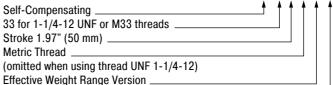
250-0292

250-0293

MC3350M-2-HT

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering


Load to be decelerated: W (lbs) Impact velocity: v (ft/s)
Propelling force: F (lbs)
Operating cycles per bour: c (/br

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n

Ambient temperature: °F

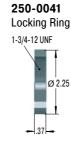
Ordering Example

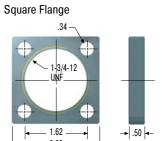
HT = Version for High Temperature Use

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
MC3325-HT	0.91	5.44	1.15	1.00	3.25	1-1/4-12 UNF / M33x1.5
MC3350-HT	1.91	7.44	1.15	1.00	4.25	1-1/4-12 UNF / M33x1.5

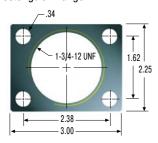
Performance								
	M	ax. Energy Capaci	ty		Effective Weigh	t		
TYPES	E ₃ in-lbs/cycle	E₄ at 68 °F in-lbs/h	E₄ at 212 °F in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Side Load Angle max.	Weight Ibs
MC3325-0-HT	1,505	1,902,909	725,760	6	24	-0	4	1.12
MC3325-1-HT	1,505	1,902,909	725,760	20	80	-1	4	1.12
MC3325-2-HT	1,505	1,902,909	725,760	68	272	-2	4	1.12
MC3325-3-HT	1,505	1,902,909	725,760	230	920	-3	4	1.12
MC3325-4-HT	1,505	1,902,909	725,760	780	3,120	-4	4	1.12
MC3350-0-HT	2,920	2,159,580	823,118	11	48	-0	3	1.39
MC3350-1-HT	2,920	2,159,580	823,118	40	160	-1	3	1.39
MC3350-2-HT	2,920	2,159,580	823,118	136	544	-2	3	1.39
MC3350-3-HT	2,920	2,159,580	823,118	460	1,840	-3	3	1.39
MC3350-4-HT	2,920	2,159,580	823,118	1,560	6,240	-4	3	1.39

¹ The effective weight range limits can be raised or lowered to special order.

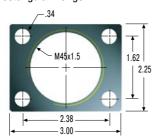

² For applications with higher side load angles please contact ACE.



Self-Compensating

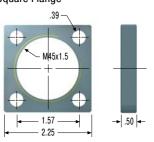

MC45-HT Positive Stop d2 d2 Stroke

Product available for UNF and metric thread (for metric add suffix -M from part number)



250-0024 Rectangular Flange

250-0299 Rectangular Flange



250-0297 Locking Ring

250-0298 Square Flange

250-0023

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

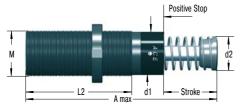
Load to be decelerated: W (lbs) Impact velocity: v (ft/s)
Propelling force: F (lbs)
Operating cycles per hour: c (/h)

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °F

Ordering Example	MC4525M-2-H	Γ
Self-Compensating		
45 for 1-3/4-12 UNF or M45 threads		
Stroke 0.91" (25 mm)		
Metric Thread		
(omitted when using thread UNF 1-3/4-12)		
Effective Weight Range Version		
HT = Version for High Temperature Use		

Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	M
MC4525-HT	0.91	5.69	1.65	1.38	3.72	1-3/4-12 UNF / M45x1.5
MC4550-HT	1.91	7.69	1.65	1.38	4.72	1-3/4-12 UNF / M45x1.5

Performance								
	M	lax. Energy Capaci		Effective Weight				
TYPES	E ₃ in-lbs/cycle	E₄ at 68 °F in-lbs/h	E ₄ at 212 °F in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Side Load Angle max.	Weight Ibs
MC4525-0-HT	3,275	2,717,177	1,035,536	15	59	-0	4	2.49
MC4525-1-HT	3,275	2,717,177	1,035,536	50	200	-1	4	2.49
MC4525-2-HT	3,275	2,717,177	1,035,536	170	680	-2	4	2.49
MC4525-3-HT	3,275	2,717,177	1,035,536	575	2,300	-3	4	2.49
MC4525-4-HT	3,275	2,717,177	1,035,536	1,950	7,800	-4	4	2.49
MC4550-0-HT	6,550	2,841,087	1,079,790	28	119	-0	3	3.00
MC4550-1-HT	6,550	2,841,087	1,079,790	100	400	-1	3	3.00
MC4550-2-HT	6,550	2,841,087	1,079,790	340	1,360	-2	3	3.00
MC4550-3-HT	6,550	2,841,087	1,079,790	1,150	4,600	-3	3	3.00
MC4550-4-HT	6,550	2,841,087	1,079,790	3,900	15,600	-4	3	3.00

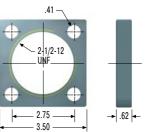

¹ The effective weight range limits can be raised or lowered to special order.

² For applications with higher side load angles please contact ACE.

Products for UNF and metric thread available

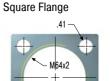
Self-Compensating

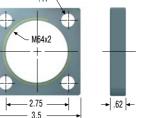
MC64-HT


Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0042 Locking Ring

250-0028


Square Flange



250-0301

250-0302

MC6450M-2-HT

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

Load to be decelerated: W (lbs) Impact velocity: v (ft/s) Propelling force: F (lbs)

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °F

Ordering Example

Self-Compensating 64 for 2-1/2-12 UNF or M64 threads Stroke 1.91" (50 mm)

Metric Thread (omitted when using thread UNF 2-1/2-12)

Effective Weight Range Version _

HT = Version for High Temperature Use

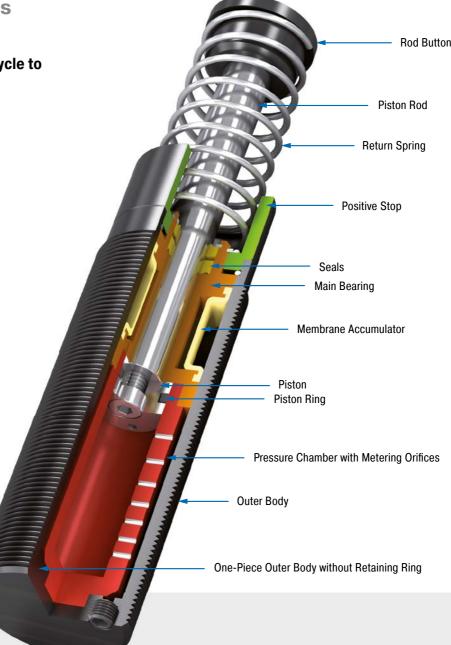
Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	М
MC6450-HT	1.91	8.85	2.37	1.90	5.5	2-1/2-12 UNF / M64x2
MC64100-HT	3.91	12.85	2.37	1.90	7.5	2-1/2-12 UNF / M64x2

Performance								
	М	Max. Energy Capacity			Effective Weight			
TYPES	E ₃ in-lbs/cycle	E₄ at 68 °F in-lbs/h	E₄ at 212 °F in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Side Load Angle max.	Weight Ibs
MC6450-0-HT	16,550	3,708,460	1,407,267	308	1,190	-0	4	6.39
MC6450-1-HT	16,550	3,708,460	1,407,267	300	1,200	-1	4	6.39
MC6450-2-HT	16,550	3,708,460	1,407,267	1,020	4,080	-2	4	6.39
MC6450-3-HT	16,550	3,708,460	1,407,267	3,460	13,480	-3	4	6.39
MC6450-4-HT	16,550	3,708,460	1,407,267	11,700	46,800	-4	4	6.39
MC64100-0-HT	33,000	4,867,907	1,770,148	154	617	-0	3	8.16
MC64100-1-HT	33,000	4,867,907	1,770,148	600	2,400	-1	3	8.16
MC64100-2-HT	33,000	4,867,907	1,770,148	2,040	8,160	-2	3	8.16
MC64100-3-HT	33,000	4,867,907	1,770,148	6,920	27,680	-3	3	8.16
MC64100-4-HT	33,000	4,867,907	1,770,148	23,400	93,600	-4	3	8.16

¹ The effective weight range limits can be raised or lowered to special order.

² For applications with higher side load angles please contact ACE.

MC33-LT to MC64-LT


Extreme temperature and high cycle applications

Self-Compensating Energy capacity 1,505 in-lbs/Cycle to 50,000 in-lbs/Cycle Stroke 0.91 in to 5.91 in

Greater application range: just like all MAGNUM types from the product family MC33 to MC64, the LT (low temperature) industrial shock absorbers are also made from one solid piece. They use special seals and fluids. This means that these versions can even be used at extreme temperatures of -58 °F to +151 °F in order to safely and reliable damp masses and absorb 100 % of the kinetic energy.

These ready-to-install machine elements are recommended even under the most unfavorable conditions. Additional benefits are their robust, innovative sealing technology, high energy absorption in a compact design, fixed positive stop and a wide damping range. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

Designed for use in extreme temperature ranges, these self-compensating industrial shock absorbers are suitable almost anywhere in plant, industrial, automation and machine engineering.

Products for UNF and metric thread

available

Technical Data

Energy capacity: 1,505 in-lbs/Cycle to

50,000 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 16.5 ft/sec. Other speeds on request.

Operating temperature range: -58 °F to

150 °F

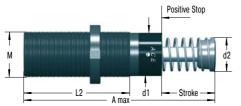
Mounting: In any position **Positive stop:** Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plastic-coated steel; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Low temperature hydraulic oil

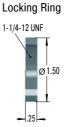
Application field: Linear slides, Swivel units, Turntables, Machines and plants, Tool machines, Machining centers, Z-axes

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

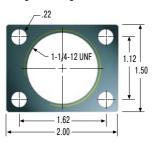

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request. Adjustable HT and LT shock absorbers.

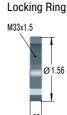
Products for UNF and metric thread available


Self-Compensating

MC33-LT

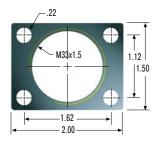

Product available for UNF and metric thread (for metric add suffix -M from part number) M33x1.5, M36x1.5 and M42x1.5 also available to order

250-0038



250-0016

Rectangular Flange

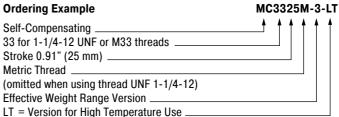


250-0292

250-0293

Rectangular Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

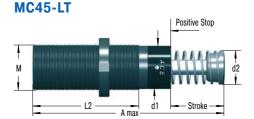

Complete details required when ordering

Load to be decelerated: W (lbs) Impact velocity: v (ft/s) Propelling force: F (lbs)

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n

Ambient temperature: °F

Ordering Example


Dimensions						
	Stroke	A max.	d1	d2	L2	M
TYPES	inch	inch	inch	inch	inch	
MC3325-LT	0.91	5.44	1.15	1.00	3.25	1-1/4-12 UNF / M33x1.5
MC3350-LT	1.91	7.44	1.15	1.00	4.25	1-1/4-12 UNF / M33x1.5

Performance									
	Max. Energy	y Capacity	Effective Weight						
TYPES	E ₃ in-lbs/cycle	E₄ in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Return Time s	³ Side Load Angle max.	Weight Ibs	
MC3325-0-LT	1,505	670,000	6	24	-0	0.08	4	1.12	
MC3325-1-LT	1,505	670,000	20	80	-1	0.08	4	1.12	
MC3325-2-LT	1,505	670,000	68	272	-2	0.08	4	1.12	
MC3325-3-LT	1,505	670,000	230	920	-3	0.08	4	1.12	
MC3325-4-LT	1,505	670,000	780	3,120	-4	0.08	4	1.12	
MC3350-0-LT	2,920	760,000	11	48	-0	0.16	3	1.39	
MC3350-1-LT	2,920	760,000	40	160	-1	0.16	3	1.39	
MC3350-2-LT	2,920	760,000	136	544	-2	0.16	3	1.39	
MC3350-3-LT	2,920	760,000	460	1,840	-3	0.16	3	1.39	
MC3350-4-LT	2,920	760,000	1,560	6,240	-4	0.16	3	1.39	

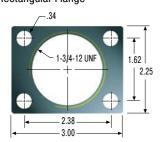
 $^{^{\}rm I}$ The effective weight range limits can be raised or lowered to special order. $^{\rm 2}$ at -58 $^{\rm c}{\rm F}$

³ For applications with higher side load angles please contact ACE.

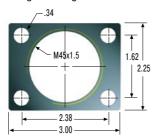
Self-Compensating

Product available for UNF and metric thread (for metric add suffix -M from part number)

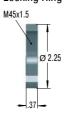
250-0041 Locking Ring 1-3/4-12 UNF Ø 2.25


Products for UNF and metric thread

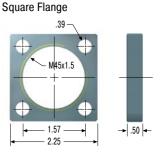
available


250-0023 Square Flange

→ .50


250-0024 Rectangular Flange

250-0299 Rectangular Flange



250-0297 Locking Ring

250-0298

1.62

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

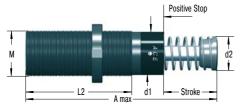
Load to be decelerated: W (lbs) Impact velocity: v (ft/s) Propelling force: F (lbs) Operating cycles per hour: c (/hr)

Number of absorbers in parallel: n Ambient temperature: °F

Ordering Example MC4525M-3-LT **Self-Compensating** 45 for 1-3/4-12 UNF or M45 threads Stroke 0.91" (25 mm) Metric Thread (omitted when using thread UNF 1-3/4-12) Effective Weight Range Version LT = Version for High Temperature Use

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
MC4525-LT	0.91	5.69	1.65	1.38	3.72	1-3/4-12 UNF / M45x1.5
MC4550-LT	1.91	7.69	1.65	1.38	4.72	1-3/4-12 UNF / M45x1.5
MC4575-LT	2.91	9.69	1.65	1.38	5.72	1-3/4-12 UNF / M45x1.5

Performance								
	Max. Energ	y Capacity		Effective Weight				
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Return Time s	³ Side Load Angle max.	Weight Ibs
MC4525-0-LT	3,275	950,000	15	59	-0	0.08	4	2.49
MC4525-1-LT	3,275	950,000	50	200	-1	0.08	4	2.49
MC4525-2-LT	3,275	950,000	170	680	-2	0.08	4	2.49
MC4525-3-LT	3,275	950,000	575	2,300	-3	0.08	4	2.49
MC4525-4-LT	3,275	950,000	1,950	7,800	-4	0.08	4	2.49
MC4550-0-LT	6,550	1,000,000	28	119	-0	0.16	3	3.00
MC4550-1-LT	6,550	1,000,000	100	400	-1	0.16	3	3.00
MC4550-2-LT	6,550	1,000,000	340	1,360	-2	0.16	3	3.00
MC4550-3-LT	6,550	1,000,000	1,150	4,600	-3	0.16	3	3.00
MC4550-4-LT	6,550	1,000,000	3,900	15,600	-4	0.16	3	3.00
MC4575-0-LT	10,000	1,300,000	44	176	-0	0.24	2	3.51
MC4575-1-LT	10,000	1,300,000	150	600	-1	0.24	2	3.51
MC4575-2-LT	10,000	1,300,000	510	2,040	-2	0.24	2	3.51
MC4575-3-LT	10,000	1,300,000	1,370	6,920	-3	0.24	2	3.51
MC4575-4-LT	10,000	1,300,000	5,850	23,400	-4	0.24	2	3.51

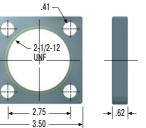

 $^{^{\}rm I}$ The effective weight range limits can be raised or lowered to special order. $^{\rm 2}$ at -58 $^{\rm e}{\rm F}$

³ For applications with higher side load angles please contact ACE.

Products for UNF and metric thread available

Self-Compensating

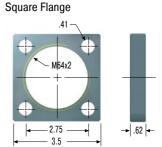
MC64-LT


Product available for UNF and metric thread (for metric add suffix -M from part number) 5.91" stroke model does not include stop collar.

Positive stop is provided by the rod button (Ø 2.36") and a stop block.

250-0042 Locking Ring 2-1/2-12 UNF Ø3.00

250-0028



250-0301 Locking Ring

250-0302

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

Load to be decelerated: W (lbs) Impact velocity: v (ft/s) Propelling force: F (lbs)

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n

Ambient temperature: °F

Ordering Example	MC6450M-3-LT
Self-Compensating	
64 for 2-1/2-12 UNF or M64 threads	
Stroke 1.91" (50 mm)	
Metric Thread	
(omitted when using thread UNF 2-1/2-12)	
Effective Weight Range Version	
LT = Version for High Temperature Use	

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
MC6450-LT	1.91	8.85	2.37	1.90	5.5	2-1/2-12 UNF / M64x2
MC64100-LT	3.91	12.85	2.37	1.90	7.5	2-1/2-12 UNF / M64x2
MC64150-LT	5.91	17.73	2.37	1.90	9.5	2-1/2-12 UNF / M64x2

Performance								
	Max. Energ	y Capacity		Effective Weigh	t			
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	1 We min. Ibs	¹ We max. Ibs	Hardness	² Return Time s	³ Side Load Angle max.	Weight Ibs
MC6450-0-LT	16,551	1,300,000	308	1,190	-0	0.24	4	6.39
MC6450-1-LT	16,551	1,300,000	300	1,200	-1	0.24	4	6.39
MC6450-2-LT	16,551	1,300,000	1,020	4,080	-2	0.24	4	6.39
MC6450-3-LT	16,551	1,300,000	3,460	13,480	-3	0.24	4	6.39
MC6450-4-LT	16,551	1,300,000	11,700	46,800	-4	0.24	4	6.39
MC64100-0-LT	33,013	1,700,000	154	617	-0	0.68	3	8.16
MC64100-1-LT	33,013	1,700,000	600	2,400	-1	0.60	3	8.16
MC64100-2-LT	33,013	1,700,000	2,040	8,160	-2	0.68	3	8.16
MC64100-3-LT	33,013	1,700,000	6,920	27,680	-3	0.68	3	8.16
MC64100-4-LT	33,013	1,700,000	23,400	93,600	-4	0.68	3	8.16
MC64150-0-LT	50,007	2,200,000	220	1,014	-0	0.96	2	11.25
MC64150-1-LT	50,007	2,200,000	900	3,600	-1	0.96	2	11.25
MC64150-2-LT	50,007	2,200,000	3,060	12,240	-2	0.96	2	11.25
MC64150-3-LT	50,007	2,200,000	10,380	41,520	-3	0.96	2	11.25
MC64150-4-LT	50,007	2,200,000	35,100	140,400	-4	0.96	2	11.25

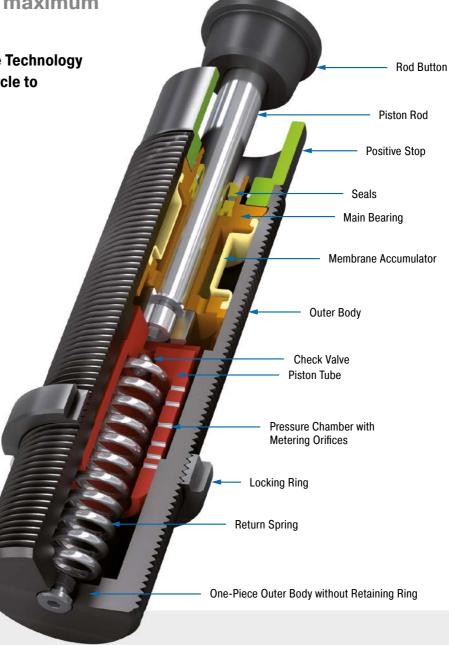
 $^{^{\}rm 1}$ The effective weight range limits can be raised or lowered to special order. $^{\rm 2}$ at -58 $^{\rm e}{\rm F}$

³ For applications with higher side load angles please contact ACE.

SC33 to SC45

Piston tube design for maximum energy absorption

Self-Compensating, Piston Tube Technology Energy capacity 1,372 In-lbs/Cycle to


6,019 in-lbs/Cycle

Stroke 0.91 in to 1.91 in

True performers: The SC33 to SC45 absorber models are strong and durable by combining the proven sealing technology from the MAGNUM range including membrane accumulator with the well-known piston tube technology from the SC² family. We increase the oil volume to ensure the maximum effective weights. Short stroke lengths of .98" to 1.96" deliver shorter braking times in combination with high energy absorption.

These dampers safely and reliably decelerate rotary movements without unwanted recoil effects. Installation close to the pivot point is possible. ACE's generation of piston tube manage low impact speeds with ease. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers can be relied on in industrial, automation and machine engineering. They are used in pivot units, rotary tables, robot arms or integrated wherever decleration is needed.

Technical Data

Energy capacity: 1,372 In-lbs/Cycle to

6,019 in-lbs/Cycle

Impact velocity range: 0.66 ft/sec to 1.51 ft/sec. Other speeds on request.

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position **Positive stop:** Integrated

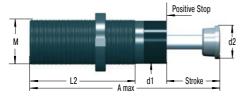
Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Low temperature hydraulic oil

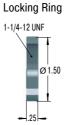
Application field: Turntables, Swivel units, Robot arms, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

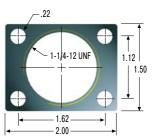
Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.


On request: Special oils, mounting inside air cylinders or other special options are available on request.

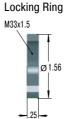
Products for UNF and metric thread available


Self-Compensating, Piston Tube Technology

SC33

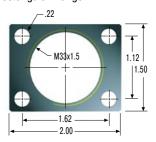

Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0038



250-0016

Rectangular Flange



250-0292

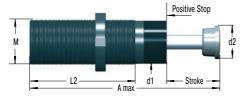
250-0293

Rectangular Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	SC3325M-5
Self-Compensating	
33 for 1-1/4-12 UNF or M33 threads	
Stroke 0.98" (25 mm)	
Metric Thread	
(omitted when using thread UNF 1 1/4-12)	
Effective Weight Range Version	

Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	М
SC3325	0.91	7.01	1.18	1.00	4.80	1-1/4-12 UNF / M33x1.5
SC3350	1.91	10.00	1.18	1.00	6.81	1-1/4-12 UNF / M33x1.5

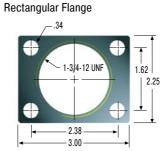

Performance											
	Max. Energ	y Capacity	E	Effective Weight							
							Return Force		² Side Load Angle		
	E ₃	E_4	1 We min.	1 We max.	Hardness	min.	max.	Return Time	max.	Weight	
TYPES	in-lbs/cycle	in-lbs/h	lbs	lbs		lbs	lbs	S	•	lbs	
SC3325-5	1,372	663,806	2,998	5,999	-5	9.89	20.01	0.75	4	1.50	
SC3325-6	1,372	663,806	5,512	12,000	-6	9.89	20.01	0.75	4	1.50	
SC3325-7	1,372	663,806	10,999	19,698	-7	9.89	20.01	0.75	4	1.50	
SC3325-8	1,372	663,806	18,999	29,998	-8	9.89	20.01	0.75	4	1.50	
SC3350-5	2,744	752,313	5,999	11,001	-5	11.47	28.10	0.90	3	2.03	
SC3350-6	2,744	752,313	10,000	22,002	-6	11.47	28.10	0.90	3	2.03	

¹ The effective weight range limits can be raised or lowered to special order.

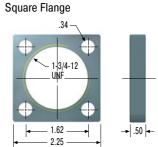
² For applications with higher side load angles please contact ACE.

Self-Compensating, Piston Tube Technology

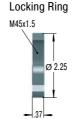
SC45

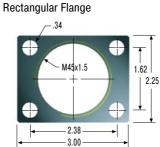


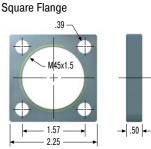
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0041

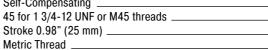
Locking Ring 1-3/4-12 UNF Ø 2.25


250-0024


250-0023


250-0297

250-0299


250-0298

SC4525M-5

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example Self-Compensating

(omitted when using thread UNF 1 3/4-12) Effective Weight Range Version _____

Dimensions						
TYPES	Stroke inch	A max. inch	d1 inch	d2 inch	L2 inch	М
SC4525	0.91	7.44	1.65	1.38	5.47	1-3/4-12 UNF / M45x1.5
SC4550	1.91	10.43	1.65	1.38	7.48	1-3/4-12 UNF / M45x1.5

Performance										
	Max. Energ	y Capacity	E	Effective Weight						
				-			Return Force		² Side Load Angle	
TYPES	E ₃ in-lbs/cycle	E ₄ in-lbs/h	¹ We min. Ibs	¹ We max. Ibs	Hardness	min. Ibs	max. Ibs	Return Time s	max.	Weight Ibs
SC4525-5	3,009	947,029	7,496	14,991	-5	15.06	23.38	0.8	4	3.15
SC4525-6	3,009	947,029	13,999	29,983	-6	15.06	23.38	0.8	4	3.15
SC4525-7	3,009	947,029	27,999	49,999	-7	15.06	23.38	0.8	4	3.15
SC4525-8	3,009	947,029	44,998	85,980	-8	15.06	23.38	0.8	4	3.15
SC4550-5	6,019	991,283	14,991	26,998	-5	10.57	54.40	1.0	3	4.19
SC4550-6	6,019	991,283	25,992	59,498	-6	10.57	54.40	1.0	3	4.19
SC4550-7	6,019	991,283	56,998	97,499	-7	10.57	54.40	1.0	3	4.19

¹ The effective weight range limits can be raised or lowered to special order.

² For applications with higher side load angles please contact ACE.

Locate and Eliminate Disturbing Vibration

Vibration isolation

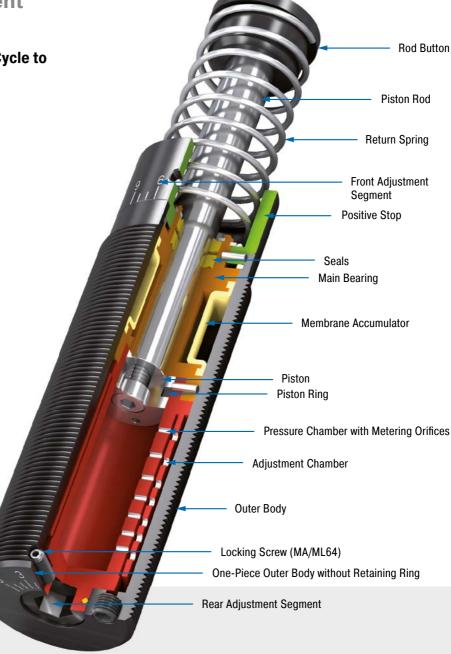
- Free App for iPhone
- Precise 3-axis measurement system
- Simple, understandable menu
- Immediate product recommendations

www.vibrochecker.com

MA/ML33 to MA/ML64

High energy absorption and progressive adjustment

Adjustable


Energy capacity 1,505 in-lbs/Cycle to 60,008 in-lbs/Cycle

Stroke 0.91 in to 5.91 in

Adjustable and unique: These industrial shock absorbers from ACE, which can be precisely adjusted both at the front and rear, also contribute towards the success of the MAGNUM range. Equipped with excellent sealing technology, an annealed guide bearing and integrated positive stop, they are robust and durable.

These dampers absorb 50 % more energy than their predecessors but are built even more compactly. The larger range of effective loads also opens up options in design and assembly. This makes the ML range especially suitable for effective weights of 661 lbs. to 1,102,311 lbs. (300 kg to 500,000 kg). These shocks are the best option wherever application data changes and flexibility is required.

These adjustable industrial shock absorbers are used in all areas of industrial, automation and machine engineering, for gantries and integrated in linear carriages or pivoting units.

Technical Data

Energy capacity: 1,505 in-lbs/Cycle to 60,008 in-lbs/Cycle

Impact velocity range: MA: 0.5 ft/sec to 16.5 ft/sec. ML: 0.06 ft/sec to 1.5 ft/sec.

Other speeds on request.

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position Positive stop: Integrated

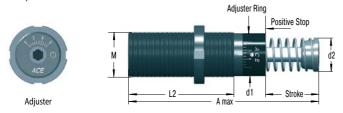
Adjustment: Hard impact at the start of stroke, adjust the ring towards 9 or PLUS. Hard impact at the end of stroke, adjust the ring towards 0 or MINUS.

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Linear slides, Swivel units, Turntables, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes, Impact panels, Handling modules

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button. For emergency use only applications and for


continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE.

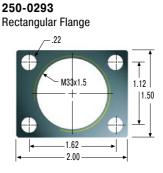
Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request.

Adjustable

MA/ML33




Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0038 Locking Ring 1-1/4-12 UNF

1.62 2.00

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact velocity

Special Models

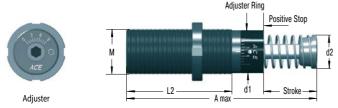
MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

MAS, MLS: Air/Oil Return with return spring. Use only with external air/oil tank.

MAN, MLN: Self-Contained without return spring

Ordering Example MA/ML3325M Adjustable. 33 for 1-1/4-12 UNF or M33 threads Stroke 0.98" (25 mm) Metric Thread (omitted when using thread UNF 1 1/4-12)

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
MA3325	0.91	5.44	1.15	1.00	3.25	1-1/4-12 UNF / M33x1.5
ML3325	0.91	5.44	1.15	1.00	3.25	1-1/4-12 UNF / M33x1.5
MA3350	1.91	7.44	1.15	1.00	4.25	1-1/4-12 UNF / M33x1.5
ML3350	1.91	7.44	1.15	1.00	4.25	1-1/4-12 UNF / M33x1.5

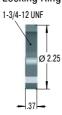

Performance											
		gy Capacity	Effectiv	e Weight							
			E₄ with	E₄ with Oil			Return Force	Return Force		3 Side Load	
	1 E ₃	$E_{\!\scriptscriptstyle{4}}$	Air/Oil Tank	Recirculation	² We min.	2 We max.	min.	max.	Return Time	Angle max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	s	۰	lbs
MA3325	1,900	670,000	1,100,000	1,500,000	20	3,800	10.3	19.8	0.03	4	0.99
ML3325	1,900	670,000	1,100,000	1,500,000	661	110,231	10.3	19.8	0.03	4	0.99
MA3350	3,800	760,000	1,200,000	1,600,000	28	5,400	9.9	30.3	0.06	3	1.19
ML3350	3,800	760,000	1,200,000	1,600,000	1,102	176,370	9.9	30.3	0.06	3	1.19

- ¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² The effective weight range limits can be raised or lowered to special order.

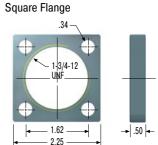
³ For applications with higher side load angles please contact ACE.

Adjustable

MA/ML45

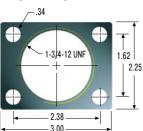


Product available for UNF and metric thread (for metric add suffix -M from part number)

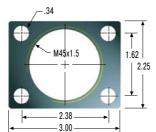

250-0041 Locking Ring

Products for UNF and metric thread

available



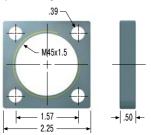
250-0023



250-0024

Rectangular Flange

250-0299 Rectangular Flange



250-0297 Locking Ring

250-0298

Square Flange

MA/ML4525M

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact

Special Models

MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

MAS, MLS: Air/Oil Return with return spring. Use only with external air/oil tank.

MAN, MLN: Self-Contained without return spring

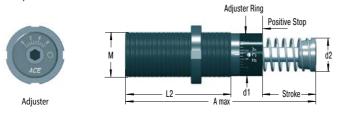
Ordering Example

Adjustable 45 for 1-3/4-12 UNF or M45 threads Stroke 0.98" (25 mm) Metric Thread

(omitted when using thread UNF 1-3/4-12)

Dimensions						
	Stroke	A max.	d1	d2	L2	M
TYPES	inch	inch	inch	inch	inch	
MA4525	0.91	5.69	1.65	1.38	3.72	1-3/4-12 UNF / M45x1.5
ML4525	0.91	5.69	1.65	1.38	3.72	1-3/4-12 UNF / M45x1.5
MA4550	1.91	7.69	1.65	1.38	4.72	1-3/4-12 UNF / M45x1.5
ML4550	1.91	7.69	1.65	1.38	4.72	1-3/4-12 UNF / M45x1.5
MA4575	2.91	9.69	1.65	1.38	5.72	1-3/4-12 UNF / M45x1.5

Performanc	e						1				
		Max. Ener	gy Capacity		Effectiv	e Weight					
			E₄ with	E₄ with Oil			Return Force	Return Force		3 Side Load	
	1 E ₃	E,	Air/Oil Tank	Recirculation	2 We min.	2 We max.	min.	max.	Return Time	Angle max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	s	۰	lbs
MA4525	3,762	950,000	1,400,000	1,700,000	95	22,000	15.1	22.8	0.03	4	2.49
ML4525	3,762	950,000	1,400,000	1,700,000	6,614	242,508	15.1	32.2	0.03	4	2.49
MA4550	7,523	1,000,000	1,700,000	2,200,000	150	32,000	15.1	32.2	0.08	3	3.00
ML4550	7,523	1,000,000	1,700,000	2,200,000	11,023	396,832	15.1	32.2	0.08	3	3.00
MA4575	11,506	1,300,000	2,000,000	2,500,000	155	33,000	11.7	40.3	0.11	2	3.51

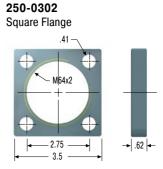

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
² The effective weight range limits can be raised or lowered to special order.

³ For applications with higher side load angles please contact ACE.

250-0028

Adjustable

MA/ML64


Product available for UNF and metric thread (for metric add suffix -M from part number) 5.91" stroke model does not include stop collar.

Positive stop is provided by the rod button (Ø 2.36") and a stop block.

250-0042 Locking Ring 2-1/2-12 UNF Ø3.00

Square Flange 2.75

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact velocity

Special Models

MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

MAS, MLS: Air/Oil Return with return spring. Use only with external

air/oil tank.

MAN, MLN: Self-Contained without return spring

Ordering Example	MA/ML6450M
Adjustable	
64 for 2-1/2-12 UNF or M64 threads	
Stroke 1.97" (50 mm)	
Metric Thread	
(omitted when using thread UNF 2-1/2-12)	

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	inch	inch	inch	inch	inch	
ML6425	0.91	6.85	2.37	1.90	4.5	2-1/2-12 UNF / M64x2
MA6450	1.91	8.85	2.37	1.90	5.5	2-1/2-12 UNF / M64x2
ML6450	1.91	8.85	2.37	1.90	5.5	2-1/2-12 UNF / M64x2
MA64100	3.91	12.85	2.37	1.90	7.5	2-1/2-12 UNF / M64x2
MA64150	5.91	17.73	2.37	1.90	9.5	2-1/2-12 UNF / M64x2

Performance											
		Max. Energ	gy Capacity		Effectiv	e Weight					
TYPES	¹ E ₃ in-lbs/cycle	E ₄ in-lbs/h	E₄ with Air/Oil Tank in-lbs/h	E ₄ with Oil Recirculation in-lbs/h	² We min.	² We max.	Return Force min. Ibs	Return Force max. Ibs	Return Time s	³ Side Load Angle max.	Weight Ibs
ML6425	10,046	1,100,000	2,200,000	2,900,000	15,432	661,386	26.7	34.9	0.06	5	5.51
MA6450	20,135	1,300,000	2,600,000	3,400,000	480	110,000	20.1	34.9	0.12	4	6.39
ML6450	20,135	1,300,000	2,600,000	3,400,000	24,250	1,102,310	20.1	34.9	0.12	4	6.39
MA64100	40,005	1,700,000	3,400,000	4,400,000	600	115,000	23.5	61.0	0.34	3	8.16
MA64150	60,008	2,200,000	4,400,000	5,700,000	730	175,000	16.9	82.0	0.48	2	11.25

- For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
 The effective weight range limits can be raised or lowered to special order.
 For applications with higher side load angles please contact ACE.

SASL1 1/8

Low velocity and high effective weight range

Adjustable

Energy capacity 8,000 in-lbs/Cycle to 16,000 in-lbs/Cycle

Stroke 1 in to 2 in

Technical Data

Energy capacity: 8,000 in-lbs/Cycle to

16,000 in-lbs/Cycle

Impact velocity range: 0.25 ft/sec to

2 ft/sec

Operating temperature range: 10 °F to

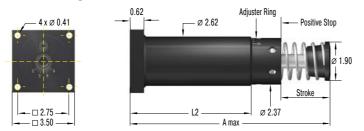
150 °F

Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel

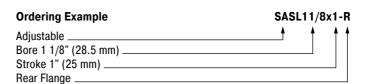
Damping medium: Automatic Transmission

Fluid (ATF)


Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

Adjustable


SASL1 1/8-R Rear Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SASL: Internal accumulator, spring return ASLA: Internal accumulator, mechanical return ASLS: External accumulator, spring return ASL: External accumulator, air or mechanical return

Dimensions			
TYPES	Stroke inch	A max. inch	L2 inch
SASL11/8X1-R	0.91	6.88	3.94
SASL11/8X2-R	1.91	8.85	4.88

Performance						
	Max. Energy Capacity			Effectiv		
	E ₃	E₄	E4 with Air/Oil Tank	1 We min.	1 We max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs
SASL11/8X1-R	8,000	1,250,000	2,500,000	700	700,000	8.10
SASL11/8X2-R	16,000	1,500,000	3,000,000	850	1,300,000	9.20

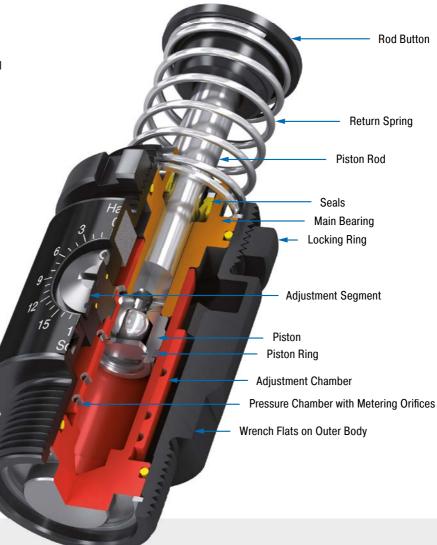
¹ The effective weight range limits can be raised or lowered to special order.

SALD1/2 to SALD1 1/8

High energy absorption and a wide effective weight range

Adjustable

Energy capacity 1,350 in-lbs/Cycle to


48,000 in-lbs/Cycle

Stroke 1 in to 6 in

Ideal for high-speed moving machines, industrial shock absorbers of the SALD product family feature a built-in external positive stop which prevents damage from bottoming out and a positive work-positioning point.

High energy absorption and a wide damping range lead to huge advantages in practice. Alongside generally more compact designs, these small yet very powerful shock absorbers enable full use of the machine's performance.

These adjustable shock absorbers can be adjusted and precisely adapted to your requirements, making them suitable for a variety of applications in industrial automation and machine engineering applications, especially in automation and gantries.

Technical Data

Energy capacity: 1,350 in-lbs/Cycle to

48,000 in-lbs/Cycle

Impact velocity range: 1 ft/sec to 15 ft/sec

Operating temperature range: 10 °F to

150 °F

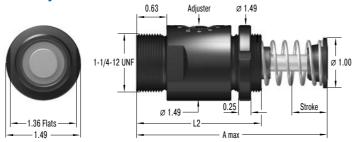
Mounting: In any position Positive stop: External

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plastic-

coated steel

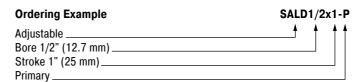
Damping medium: Automatic Transmission

Fluid (ATF)


Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

Adjustable

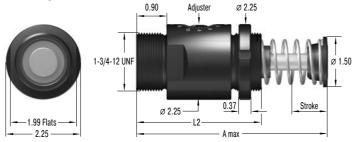

SALD1/2-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALD: Internal accumulator, spring return ALDA: Internal accumulator, mechanical return ALDS: External accumulator, spring return ALD: External accumulator, air or mechanical return

Dimensions			
TYPES	Stroke inch	A max. inch	L2 inch
SALD1/2X1-P	0.91	5.44	3.25
SALD1/2X2-P	1.91	7.44	4.25


Performance						
	Max. Energy Capacity			Effectiv		
	E ₃	E₄	E4 with Air/Oil Tank	¹ We min.	¹ We max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs
SALD1/2X1-P	1,350	750,000	1,300,000	10	2,700	1.50
SALD1/2X2-P	2,700	870,000	1,400,000	21	5,700	1.83

¹ The effective weight range limits can be raised or lowered to special order.

ACE

Adjustable

SALD3/4-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALD: Internal accumulator, spring return ALDA: Internal accumulator, mechanical return ALDS: External accumulator, spring return ALD: External accumulator, air or mechanical return

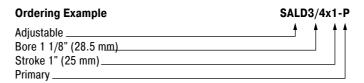
Ordering Example SALD3		
Adjustable		
Bore 3/4" (19 mm)		
Stroke 1" (25 mm)		
Primary		

Dimensions			
	Stroke	A max.	L2
TYPES	inch	inch	inch
SALD3/4X1-P	0.91	5.94	3.97
SALD3/4X2-P	1.91	7.94	4.97
SALD3/4X3-P	2.91	9.94	5.97

Performance						
	Max. Energy Capacity			Effectiv		
	E,	E,	E, with Air/Oil Tank	1 We min.	1 We max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs
SALD3/4X1-P	3,000	1,100,000	1,600,000	20	18,000	3.24
SALD3/4X2-P	6,000	1,300,000	2,000,000	35	32,000	3.99
SALD3/4X3-P	9,000	1,600,000	2,400,000	50	46,000	4.94

¹ The effective weight range limits can be raised or lowered to special order.

Adjustable

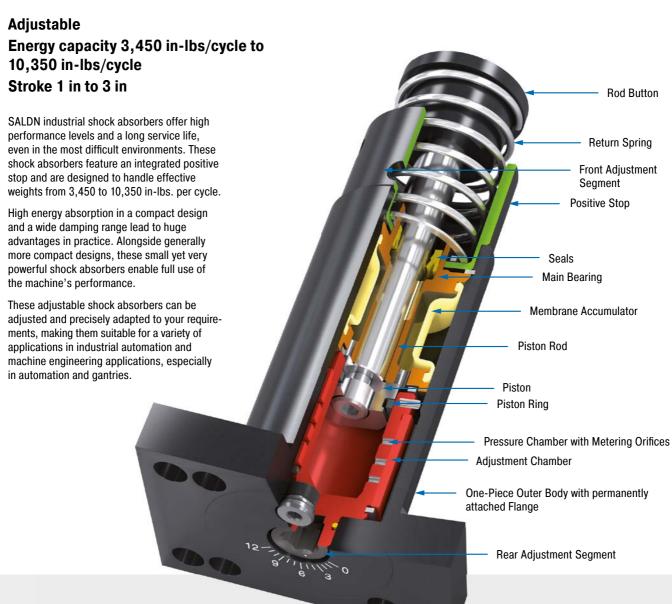

SALD1 1/8-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALD: Internal accumulator, spring return ALDA: Internal accumulator, mechanical return ALDS: External accumulator, spring return ALD: External accumulator, air or mechanical return

Dimensions			
	Stroke	A max.	L2
TYPES	inch	inch	inch
SALD11/8X2-P	1.91	8.88	5.50
SALD11/8X4-P	3.91	12.88	7.50
SALD11/8X6-P	5.91	17.75	9.50


Performance						
	Max. Energy Capacity			Effectiv		
TYPES	E ₃ in-lbs/cycle	E₄ in-lbs/h	E ₄ with Air/Oil Tank in-Ibs/h	1 We min. Ibs	¹ We max. Ibs	Weight Ibs
SALD11/8X2-P	16,000	1,500,000	3,000,000	120	50,000	8.75
SALD11/8X4-P	32,000	2,000,000	4,000,000	160	100,000	11.51
SALD11/8X6-P	48,000	2,500,000	5,000,000	200	150,000	15.52

¹ The effective weight range limits can be raised or lowered to special order.

SALDN3/4

High energy absorption and a wide effective weight range

Technical Data

Energy capacity: 3,450 in-lbs/cycle to

10,350 in-lbs/cycle

Impact velocity range: 0.5 ft/sec to

16.5 ft/sec

Operating temperature range: 10 °F to

150 °F

Mounting: In any position Positive stop: Integrated Adjustment: Rear of shock

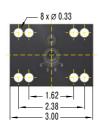
Damping medium: Automatic Transmission

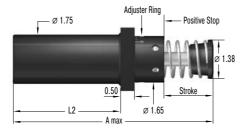
Fluid (ATF)

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules,

Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems

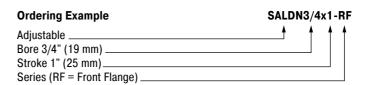
Note: ACE recommends selecting a model with 20 % more capacity than your calculations indicate necessary. This extra capacity allows for changes in weight, velocity or cycle rates increase in the future.


Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.


On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders, additional impact velocity ranges or other special options are available on request.

Adjustable

SALDN3/4-RF Front Flange

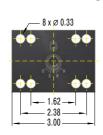


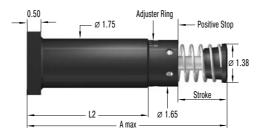
The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALDN: Internal accumulator, spring return ALDAN: Internal accumulator, mechanical return ALDSN: External accumulator, spring return ALDN: External accumulator, air or mechanical return

Dimensions			
	Stroke	A max.	L2
TYPES	inch	inch	inch
SALDN3/4X1-RF	0.98	5.69	3.22
SALDN3/4X2-RF	1.97	7.69	4.22
SALDN3/4X3-RF	2.95	9.69	5.22


Performance										
	Max	. Energy Cap	acity	Effectiv	e Weight					
			E₄ with			Return Force	Return Force		Side Load Angle	
	E ₃	E ₄	Air/Oil Tank	¹ We min.	1 We max.	min.	max.	Return Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	S	•	lbs
SALDN3/4X1-RF	3,450	950,000	1,400,000	95	22,000	15.1	22.8	0.03	4	2.49
SALDN3/4X2-RF	6,900	1,000,000	1,700,000	150	32,000	15.1	32.2	0.08	3	3.02
SALDN3/4X3-RF	10,350	1,300,000	2,000,000	155	33,000	11.7	40.3	0.11	2	3.51


¹ The effective weight range limits can be raised or lowered to special order.

ACE

Adjustable

SALDN3/4-RR Rear Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALDN: Internal accumulator, spring return ALDAN: Internal accumulator, mechanical return ALDSN: External accumulator, spring return ALDN: External accumulator, air or mechanical return

Ordering Example	SALDN3/4x1-RR
Adjustable	
Bore 3/4" (19 mm)	
Stroke 1" (25 mm)	
Series (RR = Rear Flange)	

Dimensions			
	Stroke	A max.	L2
TYPES	inch	inch	inch
SALDN3/4X1-RR	0.98	5.69	3.22
SALDN3/4X2-RR	1.97	7.69	4.22
SALDN3/4X3-RR	2.95	9.69	5.22

Performance										
	Max	c. Energy Cap	acity	Effectiv	e Weight					
			E ₄ with			Return Force	Return Force		Side Load Angle	
	E ₃	E ₄	Air/Oil Tank	1 We min.	1 We max.	min.	max.	Return Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	S	•	lbs
SALDN3/4X1-RR	3,450	950,000	1,400,000	95	22,000	15.1	22.8	0.03	4	2.49
SALDN3/4X2-RR	6,900	1,000,000	1,700,000	150	32,000	15.1	32.2	0.08	3	3.02
SALDN3/4X3-RR	10,350	1,300,000	2,000,000	155	33,000	11.7	40.3	0.11	2	3.51

¹ The effective weight range limits can be raised or lowered to special order.

High Performance

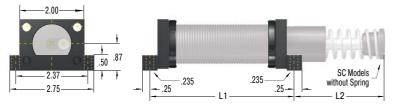
for PET Stretch Blow Machines

PET 20 and PET 27

20 million cycles – up to 225 °F – aluminium outer body hardened pressure chamber – corrosion protection

=

extended service life – low-wear – faster reduced downtime – improved system performance increased production volume – high cost efficiency

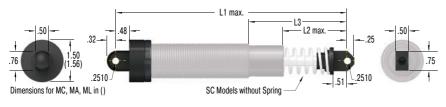

For all information see our Website www.acecontrols.com

M33x1.5

250-0294

Side Foot Mounting Kit

Dimensions		
TYPES	L1 inch	L2 inch
MC, MA, ML3325	3.75	1.94
MC, MA, ML3350	4.75	2.94
SC3325	5.31	1.94
SC3350	7.31	2.94
SCS33-25	3.75	1.94
SCS33-50	4.75	2.94


250-0294 = 1 locknut, 2 flanges, 2 bars, 4 screws M6x40, DIN 912

Torque max.: 97 in-lbs Clamping torque: 797 in-lbs

Bolts to mount assembled shock & mount not included.

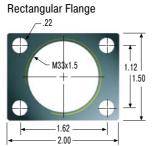
250-0323

Clevis Mount Assembly

Dimensions				
TYPES	L1 max. inch	L2 max. inch	L3 inch	
MC, MA, ML3325	6.58	1.36	2.64	
MC, MA, ML3350	8.58	2.36	3.64	
SC3325	8.14	1.37	2.65	
SC3350	11.14	2.37	3.65	

Use positive stop at both ends of travel.

250-0292 Locking Ring


M33x1.5

250-0091 Poly Button

Supplied ready mounted onto the shock absorber.

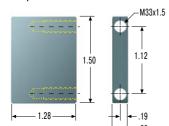
250-0293

250-0130

¹ Total installation length of the shock absorber inc. steel shroud

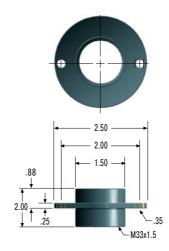
250-0730

Steel Shroud


1 A max 5.83

1 Ø 1.38

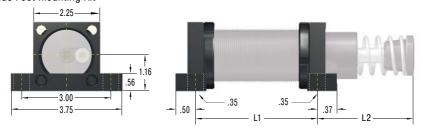
Stroke


¹ Total installation length of the shock absorber inc. steel shroud

250-0427 Stop Bar

250-0071

Flanged Stop Collar

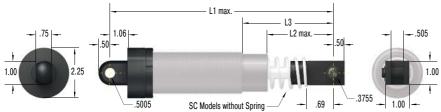

Mounting, installation, ... see page 96.

M45x1.5

250-0300

Side Foot Mounting Kit

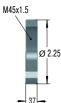
Dimensions		
TYPES	L1 inch	L2 inch
MC, MA, ML4525	3.50	1.94
MC, MA, ML4550	4.38	3.06
MC, MA4575	5.38	4.06
SC4525	5.10	2.09
SC4550	7.10	3.09
SCS45-25	3.50	1.94
SCS45-50	4.38	3.06
SCS45-75	5.38	4.06

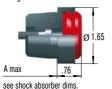

250-0300 = 1 locknut, 2 flanges, 2 bars, 4 screws M8x50, DIN 912

Torque max.: 239 in-lbs Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

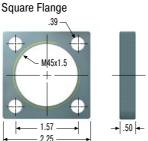
250-0325


Clevis Mount Assembly


Dimensions			
TYPES	L1 max. inch	L2 max. inch	L3 inch
MC, MA, ML4525	7.85	1.51	2.57
MC, MA, ML4550	9.85	2.51	3.57
MC, MA4575	11.85	3.51	4.57
SC4525	9.60	1.51	2.57
SC4550	12 60	2.51	3 57

Use positive stop at both ends of travel.

250-0297 Locking Ring



250-0092 Poly Button

Supplied ready mounted onto the shock absorber.

250-0298

250-0299

Rectangular Flange

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

-.34

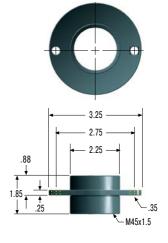
-.34

-.34

3.00

250-0778 Steel Shroud

¹ Total installation length of the shock absorber inc. steel shroud

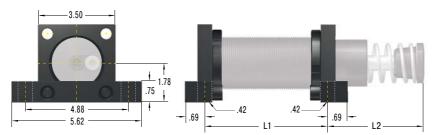

250-0731 Steel Shroud

¹ Total installation length of the shock absorber inc. steel shroud

250-0639 Stop Bar

250-0073

Flanged Stop Collar

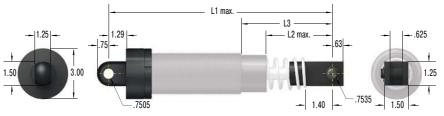

Issue 04.2018 - Specifications subject to change

M64x2

250-0304

Side Foot Mounting Kit

Dimensions		
TYPES	L1 inch	L2 inch
ML6425	4.00	2.54
MC, MA, ML6450	5.00	3.54
MC, MA64100	7.00	5.54
MC, MA64150	9.00	8.42
SCS64-50	5.00	3.54
SCS64-100	7.00	5.54
SCS64-150	9.00	8.42

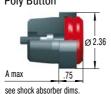

250-0304 = 1 locknut, 2 flanges, 2 bars, 4 screws M10x80, DIN 912

Torque max.: 443 in-lbs Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

250-0626

Clevis Mount Assembly


Dimensions				
TYPES	L1 max. inch	L2 max. inch	L3 inch	
ML6425	10.12	2.31	3.75	
MC, MA, ML6450	12.12	3.31	4.75	
MC, MA64100	16.12	5.31	6.75	
MC. MA64150	20.87	8.06	9.50	

Use positive stop at both ends of travel.

250-0301 Locking Ring



250-0093 Poly Button

Supplied ready mounted onto the shock absorber.

250-0302

250-0787

¹ Total installation length of the shock absorber inc. steel shroud

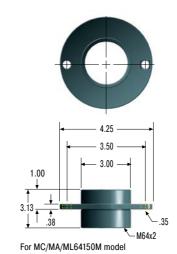
250-0839

¹ Total installation length of the shock absorber inc. steel shroud

250-0640 Stop Bar

-M64x2 1.37 -1.44 .25

For MC/MA/ML6425M to 64100M models


250-0641

For MC/MA/ML64150M model

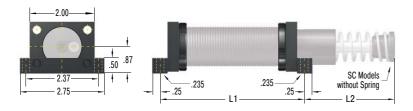

250-0077

Flanged Stop Collar

250-0075

Flanged Stop Collar

For MC/MA/ML6425M to 64100M models

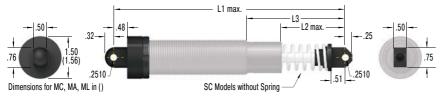

Mounting, installation, ... see page 96.

1-1/4-12 UNF

250-0015

Side Foot Mounting Kit

Dimensions		
TYPES	L1 inch	L2 inch
MC, MA, ML3325	3.75	1.94
MC, MA, ML3350	4.75	2.94
SC3325	5.31	1.94
SC3350	7.31	2.94
SCS33-25	3.75	1.94
SCS33-50	4.75	2.94


250-0015 = 1 locknut, 2 flanges, 2 bars, 4 screws 1-1/4-12 UNF, DIN 912

Torque max.: 97 in-lbs Clamping torque: 797 in-lbs

Bolts to mount assembled shock & mount not included.

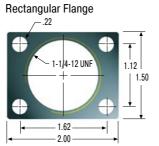
250-0225

Clevis Mount Assembly

Dimensions									
TVDEO		L2 max.	L3						
TYPES	inch	inch	inch						
MC, MA, ML3325	6.58	1.36	2.64						
MC, MA, ML3350	8.58	2.36	3.64						
SC3325	8.14	1.37	2.65						
SC3350	11 14	2 37	3 65						

Use positive stop at both ends of travel.

250-0038 Locking Ring 1-1/4-12 UNF

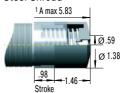

Poly Button

250-0091

A max .52 see shock absorber dims.

Supplied ready mounted onto the shock absorber.

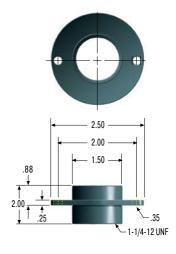
250-0016


250-0130

¹ Total installation length of the shock absorber inc. steel shroud

250-0730

Steel Shroud


¹ Total installation length of the shock absorber inc. steel shroud

250-0426

250-0070

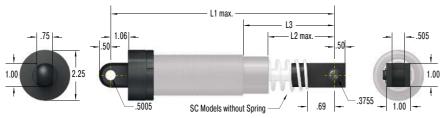
Flanged Stop Collar

1-3/4-12 UNF

250-0025

Side Foot Mounting Kit

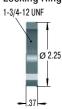
Dimensions									
TYPES	L1 inch	L2 inch							
TIPES	IIICII	IIICII							
MC, MA, ML4525	3.50	1.94							
MC, MA, ML4550	4.38	3.06							
MC, MA4575	5.38	4.06							
SC4525	5.10	2.09							
SC4550	7.10	3.09							
SCS45-25	3.50	1.94							
SCS45-50	4.38	3.06							
SCS45-75	5.38	4.06							

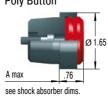

250-0025 = 1 locknut, 2 flanges, 2 bars, 4 screws 1-3/4-12 UNF, DIN 912

Torque max.: 239 in-lbs Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

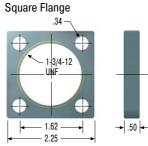
250-0324


Clevis Mount Assembly


Dimensions										
		L2 max.	L3							
TYPES	inch	inch	inch							
MC, MA, ML4525	7.85	1.51	2.57							
MC, MA, ML4550	9.85	2.51	3.57							
MC, MA4575	11.85	3.51	4.57							
SC4525	9.60	1.51	2.57							
SC4550	12.60	2.51	3.57							

Use positive stop at both ends of travel.

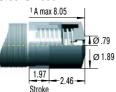
250-0041 Locking Ring



250-0092 Poly Button


Supplied ready mounted onto the shock absorber.

250-0023


250-0024

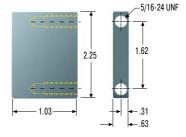
Rectangular Flange

250-0778

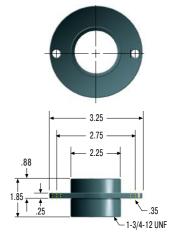

Steel Shroud

¹ Total installation length of the shock absorber inc. steel shroud

250-0731


Steel Shroud

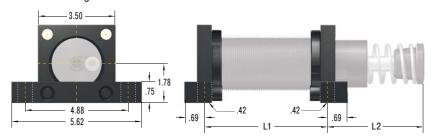
1 Total installation length of the shock absorber inc. steel shroud


250-0428

Stop Bar

250-0072

Flanged Stop Collar


Mounting, installation, ... see page 96.

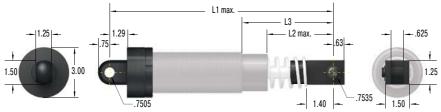
2-1/2-12 UNF

250-0030

Side Foot Mounting Kit

Dimensions		
	L1	L2
TYPES	inch	inch
ML6425	4.00	2.54
MC, MA, ML6450	5.00	3.54
MC, MA64100	7.00	5.54
MC, MA64150	9.00	8.42
SCS64-50	5.00	3.54
SCS64-100	7.00	5.54
SCS64-150	9.00	8.42

250-0030 = 1 locknut, 2 flanges, 2 bars, 4 screws 2-1/2-12 UNF, DIN 912

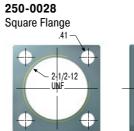

Torque max .: 442.5 in-lbs

Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

250-0625

Clevis Mount Assembly


Dimensions			
TYPES	L1 max. inch	L2 max. inch	L3 inch
ML6425	10.12	2.31	3.75
MC, MA, ML6450	12.12	3.31	4.75
MC, MA64100	16.12	5.31	6.75
MC MA64150	20.87	8.06	9.50

Use positive stop at both ends of travel.

Supplied ready mounted onto the shock absorber.

2.75

3.50

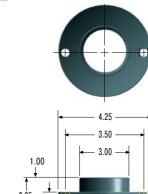
250-0074

Flanged Stop Collar

¹ Total installation length of the shock absorber inc. steel shroud

¹ Total installation length of the shock absorber inc. steel shroud

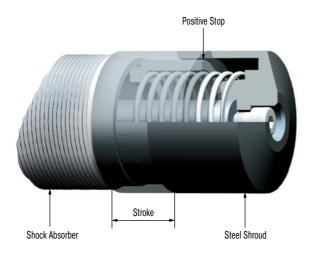
Stroke


250-0076

250-0430 Stop Bar -3/8-24 UNF 1.37 .25

← .50

For MC/MA/ML6425 to 64100 models


Flanged Stop Collar 4.25 3.00 1.00 - 2-1/2-12 UNF - 2-1/2-12 UNF

For MC/MA/ML 6425 to 64100 models

For MC/MA/ML64150M model

Mounting, installation, ... see page 96.

Steel Shroud

For industrial shock absorbers with a 1 or 2 in stroke.

Grinding beads, sand, welding splatter, paints and adhesives etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.

Material

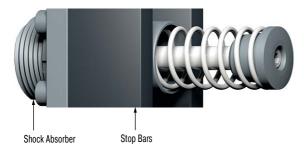
Hardened high tensile steel

Mounting information

To mount the steel shroud it's necessary to remove the rod end button of the shock absorber.

Safety information

When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled.



Flanged Stop Collar

Flanged stop collars provide industrial shock absorbers with a secure front mount and a positive mechanical stop. No specific mounting panel thickness is required.

Material

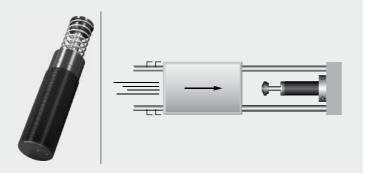
Hardened high tensile steel

Stop Bar

Stop bars are used in pairs and come two per package for assembly. Hard metric stop bars are aviailable upon request.

Materia

Hardened high tensile steel




Application Examples

MC33

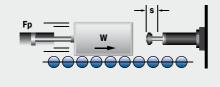
Quicker, gentle positioning

ACE industrial shock absorbers optimize portals for machine loading and increase productivity. This device is driven by piston rodless pneumatic cylinders, where two gripper slides are moving independently of each other at speeds of 6.56 ft/sec to 8.20 ft/sec, is equipped with industrial shock absorbers as brake systems. Their function is to stop a mass of 55 lbs up to 540 times per hour. The MC3350-1-S model was chosen for this application, allowing easy and extremely accurate adjustment of the end positions of the adjustable limit stops. In comparison to brake systems with other function principles, shock absorbers allow higher travel speeds and shorter cycle sequences.

Industrial shock absorbers optimize portal operation

MC45

MAGNUM protection of carriage construction


Serving a similar purpose, several ACE dampers are installed in Jada, the triple-axis, free-moving badminton robot. In order for the badminton robot to be capable of playing, it must be able to change direction in the shortest time possible. Jada is designed therefore to brake at a maximum of $30~\text{m/s}^2$. For this task, linear modules are limited by the use of industrial shock absorbers of the type MC4575-0. Miniature shock absorbers and profile dampers are also installed at the location of the "racket hand". In all cases, the modern ACE machine elements serve to protect the end positions of the construction.

A variety of different dampers are used to slow the rapid movements of a badminton robot

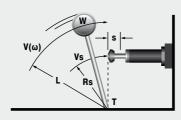
FMTC vzw, 3001 Leuven, Belgium

MC64-VA

MAGNUM damper for safety under water

A pipeline from the rig to the well head that is as flexible as possible is considered to be a quick-disconnect connection in an emergency. Nevertheless, this connection made at the oil source on the sea floor is an Achilles heel. If the connection snaps or if it cannot be separated quickly enough during hazards such as storms, unpredictable, often serious consequences can hardly be prevented. With the so-called XR connector, the safety at this critical point is significantly increased. In the innovative design 10 industrial shock absorbers per connection from the MAGNUM series from ACE master this important task.

MAGNUMS allow for emergency quick disconnection of the pipelines from the oil rigs

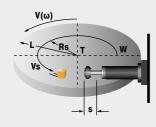

Subsea Technologies Ltd, Aberdeen, AB12 3AY, UK

MC64M

Emergency exits made safer with MAGNUM shock absorbers

MAGNUM 64150 industrial shock absorbers are integrated into the overall safety design for the Amsterdam metro system. In contrast to previous solutions, ACE shocks ensure rapid opening and stopping for a five-ton barrier located at the end of an emergency escape route. In this application, over 45,000 in-lbs of energy are able to be absorbed per stroke. Through installing shock absorbers in end positions of the design, over 140,000 lbs of effective weight are able to be absorbed. ACE provided an excellent solution, even with an impact speed of approximately 6 feet per second and the barrier exit grille at an unusual impact angle.

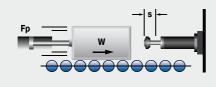
A heavy, five-ton barrier safely stopped by MAGNUM shock absorbers J.P. van Eesteren B.V., 1006 BD Amsterdam, Netherlands


Application Examples

MA/ML33

Safe swiveling

ACE industrial shock absorbers offer safety to spare for rotation or braking of a large telescope. The optical system of this telescope for special observations is moveable in two space coordinates. The structure in which the telescope is mounted weighs 33,069 lbs and consists of a turntable with drives and two wheel disks rotating on bearings. It enables a rotation by $\pm 90^\circ$ from horizon to horizon. To safeguard the telescope in case of overshooting the respective swiveling limits, ML3325 industrial shock absorbers are used as braking elements. Should the telescope inadvertently overshoot the permissible swivel range, they will safely damp the travel of the valuable telescope.


Perfect overshoot protection for precision telescope

MA/ML64

MAGNUM helps in the fight against people not buckling up

The Central-Hessian police department has developed an accident simulator with the help of ACE Stoßdämpfer GmbH aimed at significantly increasing the number of road traffic seatbelt wearers. The mobile simulator demonstrates strikingly that the smallest impact velocities lead to enormous forces, even when wearing seat belts, and can cause serious injuries when not. Adjustable MAGNUM type MA64150 dampers are installed to protect the simulator passengers and the end points of the construction at various speeds and moving masses. These are the largest adjustable dampers of the ACE product range; stronger special constructions are possible at any time.

MAGNUM dampers ensure the reliable braking of moving masses on the seat and the protection of the entire carriage construction
Central Hessian Police Department, Karl-Glöckner-Straße 2, 35394 Gießen,

Issue 04.2018 - Specifications subject to change

Heavy Industrial Shock Absorbers

Effective shock absorption for heavy loads

The heavy industrial shock absorbers from ACE top off the company's offerings in damping technology. This ACE category gives Designers a choice between self-compensating and adjustable machine elements.

Whichever design is chosen, this type of shock absorber impresses with its robustness and operational readiness wherever heavy loads need to be reliably stopped on-the-spot and at a precise point.

The CA4 models can absorb up to 1,120,000 in/lbf (126,500 Nm) of energy. The series of heavy duty, self-compensating "CA" types are equally suitable for use as an emergency stop as are the adjustable types with the designations "A". The range of effective loads covered is increased considerably for this purpose.

Heavy Industrial Shock Absorbers

CA2 to CA4

Page 102

Self-Compensating

Deceleration of heavy loads

Portal systems, Machines and plants, Conveyor systems, Crane systems,

A1 1/2 to A3 Page 106

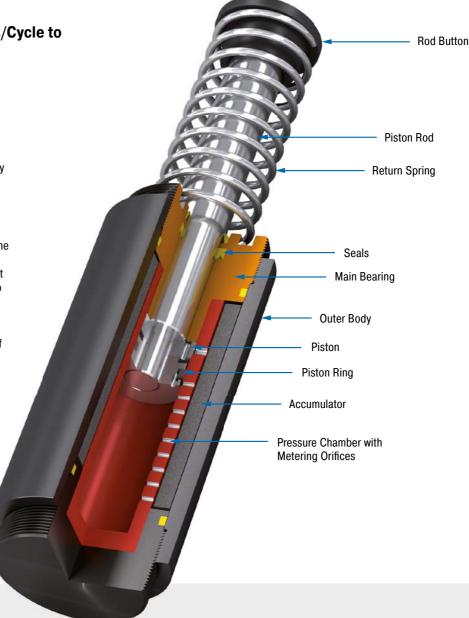
Adjustable

Deceleration of heavy loads and progressive adjustment

Portal systems, Machines and plants, Conveyor systems, Crane systems

CA2 to CA4

Deceleration of heavy loads


Self-Compensating Energy capacity 21,000 in-lbs/Cycle to 1,120,000 in-lbs/Cycle

Stroke 2 in to 16 in

Powerful: The weight of these high capacity absorbers are between 28.2 lbs and 322 lbs. (12.8 and 146 kg). They complement ACE's product range of self-compensating shock absorbers. All models from this product family are designed for applications where robustness and large energy absorption are important.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. The CA models can absorb up to 1,119,620 in-lbs (126,500 Nm) of energy and can be used in the area of effective weights between 1,543 lbs and 718,707 lbs. (700 kg and 326,000 kg). The combination of being extremely solid, absorbing high levels of energy and having a large damping range makes them invaluable. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These heavy duty self-compensating industrial shock absorbers are primarily used in heavy industrial engineering e.g. on lift bridges and steel structures or for damping sluice systems.

Technical Data

Energy capacity: 21,000 in-lbs/Cycle to 1,120,000 in-lbs/Cycle

Impact velocity range: 1 ft/sec to 16.5 ft/sec. Other speeds on request. Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

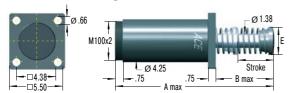
Mounting: In any position

Positive stop: External positive stops 0.10" to 0.12" before the end of stroke provided by the

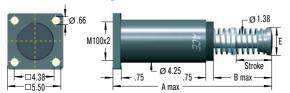
Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated steel

Damping medium: Automatic Transmission Fluid (ATF)

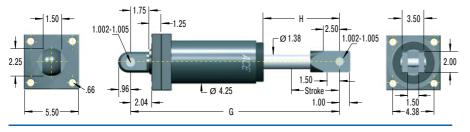
Application field: Portal systems, Machines and plants, Conveyor systems, Crane systems, Loading and lifting equipment, Shelf storage systems, Heavy load applications, Swivel units


Note: For emergency use only applications and for continous use it is possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.


On request: Special oils, nickel-plated, increased corrosion protection or other special options are available on request.

Self-Compensating


CA2-F Front Flange

CA2-R Rear Flange

CA2-C Clevis Mount

Model Type Prefix

Standard Models

CA: Self-contained with return spring, self-compensating

Special Models

CAA: Air/Oil return without return spring. Use only with external air/oil tank. CNA: Self-Contained without return spring CSA: Air/Oil return with return spring. Use only with external air/oil tank.

CA2-S 2" Bore Foot Mount

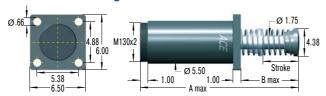
The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example Self-Compensating Bore Size Ø 2" Stroke Length 4" (102 mm) Front Flange Mounting Effective Weight Range Version

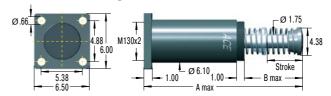
Dimensions						
TVDE0	Stroke	A max.	B max.	C	D max.	. E
TYPES	inch	inch	inch	inch	inch	inch
CA2X2	2.00	12.37	4.37	9.28	3.74	2.73
CA2X4	4.00	16.37	6.31	11.28	5.74	2.73
CA2X6	6.00	20.37	8.37	13.28	7.74	2.73
CA2X8	8.00	25.37	11.37	15.28	10.74	3.63
CA2X10	10.00	29.37	13.37	17.28	12.74	4.25

	Ma	x. Energy Cap	pacity	Ef	fective Weig	ht					
			² E ₄ with Air/Oil				Return Force	Return Force		Side Load Angle	
	1 E ₃	² E ₄	Tank	3 We min.	3 We max.	Hardness	min.	max.	Return Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs		lbs	lbs	S	۰	lbs
CA2X2-1	32,000	9,600,000	12,000,000	1,600	4,800	-1	48	63	0.25	3	28.2
CA2X2-2	32,000	9,600,000	12,000,000	4,000	12,000	-2	48	63	0.25	3	28.2
CA2X2-3	32,000	9,600,000	12,000,000	10,000	30,000	-3	48	63	0.25	3	28.2
CA2X2-4	32,000	9,600,000	12,000,000	25,000	75,000	-4	48	63	0.25	3	28.2
CA2X4-1	64,000	12,000,000	15,000,000	3,200	9,600	-1	34	63	0.50	3	32.6
CA2X4-2	64,000	12,000,000	15,000,000	8,000	24,000	-2	34	63	0.50	3	32.6
CA2X4-3	64,000	12,000,000	15,000,000	20,000	80,000	-3	34	63	0.50	3	32.6
CA2X4-4	64,000	12,000,000	15,000,000	50,000	150,000	-4	34	63	0.50	3	32.6
CA2X6-1	96,000	14,400,000	18,000,000	4,800	14,400	-1	34	90	0.60	3	37.3
CA2X6-2	96,000	14,400,000	18,000,000	12,000	36,000	-2	34	90	0.60	3	37.3
CA2X6-3	96,000	14,400,000	18,000,000	30,000	90,000	-3	34	90	0.60	3	37.3
CA2X6-4	96,000	14,400,000	18,000,000	75,000	225,000	-4	34	90	0.60	3	37.3
CA2X8-1	128,000	16,800,000	21,000,000	6,400	19,200	-1	51	144	0.70	3	42.6
CA2X8-2	128,000	16,800,000	21,000,000	16,000	48,000	-2	51	144	0.70	3	42.6
CA2X8-3	128,000	16,800,000	21,000,000	40,000	120,000	-3	51	144	0.70	3	42.6
CA2X8-4	128,000	16,800,000	21,000,000	100,000	300,000	-4	51	144	0.70	3	42.6
CA2X10-1	160,000	19,200,000	24,000,000	8,000	24,000	-1	35	101	0.80	3	50.3
CA2X10-2	160,000	19,200,000	24,000,000	20,000	60,000	-2	35	101	0.80	3	50.3
CA2X10-3	160,000	19,200,000	24,000,000	50,000	150,000	-3	35	101	0.80	3	50.3
CA2X10-4	160,000	19,200,000	24,000,000	125,000	375,000	-4	35	101	0.80	3	50.3

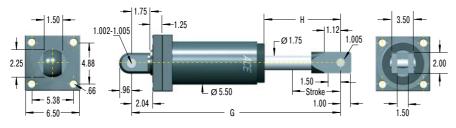
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

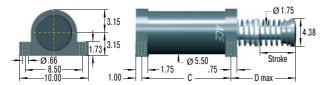

² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.



Self-Compensating


CA3-F Front Flange


CA3-R Rear Flange

CA3-C Clevis Mount

CA3-S Foot Mount

The calculation and selection of the most suitable damper

Model Type Prefix

Standard Models

CA: Self-contained with return spring, self-compensating

Special Models

CAA: Air/Oil return without return spring. Use only with external air/oil tank.

CNA: Self-Contained without return spring

CSA: Air/Oil return with return spring. Use only with external air/oil tank.

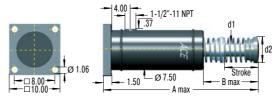
should be carried out or be approved by ACE.

Ordering Example	CA3x5-3F
Self-Compensating	
Bore Size Ø 3"	
Stroke Length 5" = 127 mm	
Effective Weight Range Version	
Front Flange Mounting	

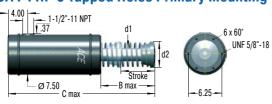
Dimensions					
	Stroke	A max.	B max.	С	D max.
TYPES	inch	inch	inch	inch	inch
CA3X5	5.00	19.31	8.31	9.95	8.81
CA3X8	8.00	25.31	11.31	12.95	11.81
CA3X12	12.00	35.09	17.09	16.95	17.59

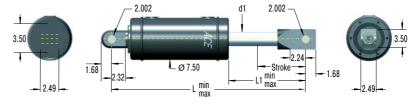
Performa	nce										
	Ma	x. Energy Cap	acity	Ef	fective Weig	ht					
TYPES	¹ E ₃ in-lbs/cycle	² E ₄ in-lbs/h	² E ₄ with Air/Oil Tank in-lbs/h	³ We min.	³ We max.	Hardness	Return Force min. Ibs	Return Force max. Ibs	Return Time s	Side Load Angle max.	Weight Ibs
CA3X5-1	125,000	20,000,000	25,000,000	6,400	19,200	-1	59	156	0.6	3	63.7
CA3X5-2	125,000	20,000,000	25,000,000	16,000	48,000	-2	59	156	0.6	3	63.7
CA3X5-3	125,000	20,000,000	25,000,000	40,000	120,000	-3	59	156	0.6	3	63.7
CA3X5-4	125,000	20,000,000	25,000,000	100,000	300,000	-4	59	156	0.6	3	63.7
CA3X8-1	200,000	32,000,000	40,000,000	10,240	30,720	-1	62	162	0.8	3	73.6
CA3X8-2	200,000	32,000,000	40,000,000	25,600	76,800	-2	62	162	0.8	3	73.6
CA3X8-3	200,000	32,000,000	40,000,000	64,000	192,000	-3	62	162	0.8	3	73.6
CA3X8-4	200,000	32,000,000	40,000,000	160,000	480,000	-4	62	162	0.8	3	73.6
CA3X12-1	300,000	48,000,000	60,000,000	15,360	46,080	-1	60	160	1.2	3	89.5
CA3X12-2	300,000	48,000,000	60,000,000	38,400	15,200	-2	60	160	1.2	3	89.5
CA3X12-3	300,000	48,000,000	60,000,000	96,000	288,000	-3	60	160	1.2	3	89.5
CA3X12-4	300,000	48,000,000	60,000,000	240,000	720,000	-4	60	160	1.2	3	89.5

For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
 Figures for oil recirculation systems on request.
 The effective weight range limits can be raised or lowered to special order.



Self-Compensating


CA4-F Front Flange


CA4-R Rear Flange

CA4-FRP 6 Tapped Holes Primary Mounting

CA4-C Clevis Mount

CA4-S Foot Mount

The calculation and selection of the most suitable damper

Model Type Prefix

Standard Models

CA: Self-contained with return spring, self-compensating

Special Models

CAA: Air/Oil return without return spring. Use only with external air/oil tank.

CNA: Self-Contained without return spring

CSA: Air/Oil return with return spring. Use only with external air/oil tank.

should be carried out or be approved by ACE.

Ordering Example	CA4x8R-5
Self-Compensating	
Bore Size Ø 4"	
Stroke Length 8" (203 mm)	
Rear Flange Mounting	
Effective Weight Range Version	

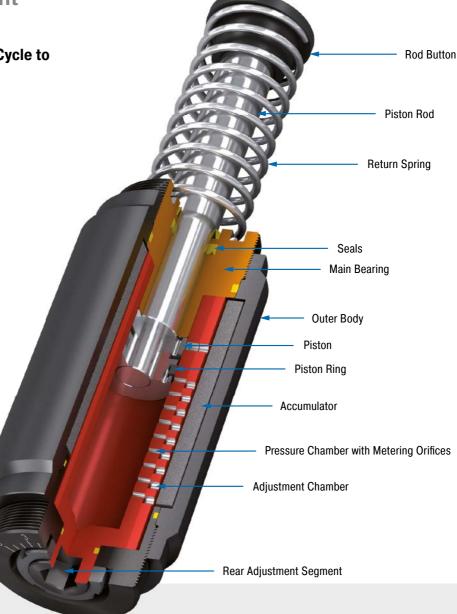
Dimensions									
	Stroke	A max.	B max.	C max.	D max.	d1	d2	Е	F
TYPES	inch	inch	inch	inch	inch	inch	inch	inch	inch
CA4X6	6.00	28.21	10.96	26.71	9.46	2.12	4.50	17.50	10.09
CA4X8	8.00	32.21	12.96	30.71	11.46	2.12	4.50	19.50	12.09
CA4X16	16.00	51.21	23.96	49.71	22.46	2.50	5.00	27.50	23.09

Performance											
	Max. Energy Capacity				Effective Weight						
TYPES	¹ E ₃ in-lbs/cycle	E ₄ in-lbs/h	E ₄ with Air/Oil Tank in-lbs/h	E ₄ with Oil Recirculation in-lbs/h	² We min.	² We max.	Hardness	Return Force min. Ibs	Return Force max. Ibs	Return Time s	Weight Ibs
CA4X6-3	420,000	27,000,000	45,000,000	58,400,000	8,000	19,000	-3	108	222	1.8	132.3
CA4X6-5	420,000	27,000,000	45,000,000	58,400,000	19,000	41,000	-5	108	222	1.8	132.3
CA4X6-7	420,000	27,000,000	45,000,000	58,400,000	41,000	94,000	-7	108	222	1.8	132.3
CA4X8-3	560,000	30,000,000	50,000,000	64,600,000	11,000	25,000	-3	71	222	2.3	149.9
CA4X8-5	560,000	30,000,000	50,000,000	64,600,000	25,000	55,000	-5	71	222	2.3	149.9
CA4X8-7	560,000	30,000,000	50,000,000	64,600,000	55,000	125,000	-7	71	222	2.3	149.9
CA4X16-3	1,120,000	50,000,000	85,000,000	109,800,000	22,000	50,000	-3	71	222	ask	321.9
CA4X16-5	1,120,000	50,000,000	85,000,000	109,800,000	50,000	110,000	-5	71	222	ask	321.9
CA4X16-7	1,120,000	50,000,000	85,000,000	109,800,000	110,000	250,000	-7	71	222	ask	321.9

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² The effective weight range limits can be raised or lowered to special order.

A1 1/2 to A3


Deceleration of heavy loads and progressive adjustment

Adjustable Energy capacity 21,000 in-lbs/Cycle to 390,000 in-lbs/Cycle Stroke 2.00 in to 12.00 in

Strong and adjustable: Also in ACE's product range of units are adjustable heavy duty industrial shock absorbers. The models from the A1 1/2 to A3 range, which weigh between 16.6 lbs and 105.8 lbs (7.55 and 48 kg), are extremely robust, ready-to-install hydraulic machine components with impressively high energy absorption levels and a wide range of damping rates.

Their special aspect is the flexibility, as all the absorbers can be adjusted using a socket on the absorber base and be perfectly adapted to the application. The A models cover a range of effective weights from 0.66 lbs to 449,743 lbs. (0.3 to 204,000 kg) and can absorb up to 389,433 in-lbs. (44,000 Nm) energy.

These heavy duty, adjustable ACE industrial shock absorbers are the first choice in heavy duty applications and generally in heavy industrial maching design when the usage data has not been exactly determined.

Technical Data

Energy capacity: 21,000 in-lbs/Cycle to 390,000 in-lbs/Cycle

Impact velocity range: 0.5 ft/sec to 15 ft/sec. Other speeds on request. Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position

Positive stop: External positive stops 0.10" to 0.12" before the end of stroke provided by the

Adjustment: Hard impact at the start of stroke, adjust the ring towards 9. Hard impact at the end of stroke, adjust the ring towards 0. Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Portal systems, Machines and plants, Conveyor systems, Crane systems, Loading and lifting equipment, Impact panels, Heavy load applications, Swivel units, Shelf storage systems

Note: For emergency use only applications and for continous use it is possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection or other special options are available on request.

Adjustable

A1 1/2-F Front Flange

A1 1/2-R Rear Flange

A1 1/2-C Clevis Mount

A1 1/2-S Foot Mount

The calculation and selection of the most suitable damper

Model Type Prefix

Standard Models

A: Self-contained with return spring, adjustable

Special Models

AA: Air/Oil return without return spring. Use only with external air/oil tank.

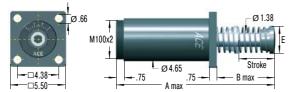
NA: Self-contained without return spring

SA: Air/Oil return with return spring. Use only with external air/oil tank.

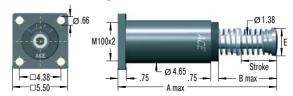
should be carried out or be approved by ACE.

Ordering Example	A11/2x2R				
Adjustable					
Bore Size Ø 1½"					
Stroke Length 2" (50.8 mm)					
Rear Flange Mounting					

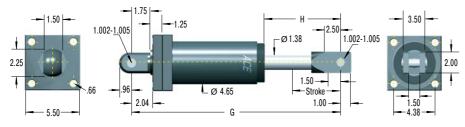
Dimensions							
	Stroke	L min.	L max.	L1	L2	L3	L4
TYPES	inch	inch	inch	inch	inch	inch	inch
A11/2X2	2.00	10.94	12.94	7.69	2.13	-	-
A11/2X31/2	3.50	12.46	15.97	9.19	2.13	6.69	2.31
A11/2X5	5.00	13.97	18.97	10.69	2.13	8.19	2.31
A11/2X61/2	6.50	16.22	22.72	12.94	2.88	9.69	3.06

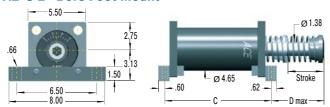

Performance										
	Max	x. Energy Cap	acity	Effectiv	e Weight					
			² E ₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	1 E ₃	² E₄	Tank	3 We min.	3 We max.	min.	max.	Return Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	s	۰	lbs
A11/2X2	21,000	3,200,000	4,000,000	430	70,000	34.9	47.6	0.10	5	16.6
A11/2X31/2	36,750	5,600,000	7,000,000	480	80,000	25.4	47.6	0.25	4	19.6
A11/2X5	52,500	8,000,000	10,000,000	500	90,000	20.7	52.5	0.40	3	20.6
A11/2X61/2	68,250	10,400,000	13,000,000	680	100,000	20.7	97.4	0.40	2	26.3

For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
 Figures for oil recirculation systems on request.
 The effective weight range limits can be raised or lowered to special order.



Adjustable


A2-F Front Flange


A2-R Rear Flange

A2-C Clevis Mount

A2-S 2" Bore Foot Mount

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

A: Self-contained with return spring, adjustable

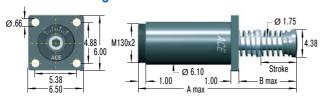
Special Models

AA: Air/Oil return without return spring. Use only with external air/oil tank.

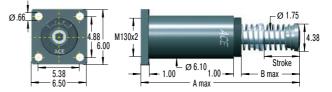
NA: Self-contained without return spring

SA: Air/Oil return with return spring. Use only with external air/oil tank.

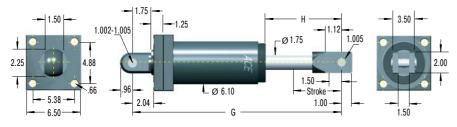
Ordering Example	A2x6-R
Adjustable	
Bore Size Ø 2"	
Stroke Length 6" = 152 mm	
Rear Flange Mounting	

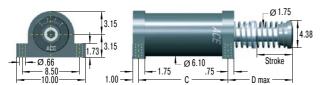

Dimensions						
TYPES	Stroke inch	A max. inch	B max. inch	C inch	D max. inch	E inch
A2X2	2.00	12.37	4.37	9.28	3.74	2.73
A2X4	4.00	16.37	6.31	11.28	5.74	2.73
A2X6	6.00	20.37	8.37	13.28	7.74	2.73
A2X8	8.00	25.37	11.37	15.28	10.74	3.63
A2X10	10.00	29.37	13.37	17.28	12.74	4.25

Performance	e									
	Max	x. Energy Capa	acity	Effectiv	e Weight					
			² E ₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	1 E ₃	² E ₄	Tank	3 We min.	3 We max.	min.	max.	Return Time	max.	Weight
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	s	•	lbs
A2X2	32,000	9,600,000	12,000,000	560	170,000	48	63	0.25	3	31.5
A2X4	80,000	12,000,000	15,000,000	560	180,000	34	63	0.50	3	36.9
A2X6	120,000	14,400,000	18,000,000	570	190,000	34	90	0.60	3	42.6
A2X8	170,000	16,800,000	21,000,000	580	200,000	51	144	0.70	3	49.2
A2X10	210 000	19 200 000	24 000 000	720	250 000	35	101	0.80	3	57.8


For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
 Figures for oil recirculation systems on request.
 The effective weight range limits can be raised or lowered to special order.

Adjustable


A3-F Front Flange


A3-R Rear Flange

A3-C Clevis Mount

A3-S Foot Mount

Model Type Prefix

Standard Models

A: Self-contained with return spring, adjustable

Special Models

AA: Air/Oil return without return spring. Use only with external air/oil tank.

NA: Self-contained without return spring

SA: Air/Oil return with return spring. Use only with external air/oil tank.

The calculation and selection of the most suitable damper
should be carried out or be approved by ACE.

Ordering Example	A3x8R
Adjustable	
Bore Size Ø 3"	
Stroke Length 8" (203 mm)	
Rear Flange Mounting	

Dimensions					
	Stroke	A max.	B max.	С	D max.
TYPES	inch	inch	inch	inch	inch
A3X5	5.00	19.31	8.31	9.95	8.81
A3X8	8.00	25.31	11.31	12.95	11.81
A3X12	12.00	35.09	17.09	16.95	17.59

Performance	Performance											
	Max	k. Energy Cap	acity	Effectiv	e Weight							
			² E₄ with Air/Oil			Return Force	Return Force		Side Load Angle			
	1 E ₃	2 E₄	Tank	3 We min.	3 We max.	min.	max.	Return Time	max.	Weight		
TYPES	in-lbs/cycle	in-lbs/h	in-lbs/h	lbs	lbs	lbs	lbs	s	۰	lbs		
A3X5	140,000	20,000,000	25,000,000	1,050	340,000	59	156	0.6	3	72.1		
A3X8	250,000	32,000,000	40,000,000	1,200	400,000	62	162	0.8	3	84.9		
A3X12	390,000	48,000,000	60,000,000	1,350	450,000	60	160	1.2	3	105.8		

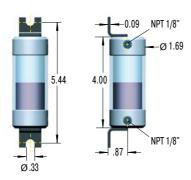
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.

Air/Oil Tanks for industrial shock absorbers

For high cycle rates and extreme temperatures with limited mounting space

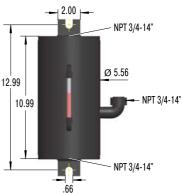

Shock absorbers convert the introduced energy into heat. The more frequently a shock absorber is stressed per hour, the hotter the oil volume becomes over time. If the requirements placed on the impact frequency of a shock absorber are especially high, use of an air-oil tank is the solution.

Thanks to increased oil volume and resulting heat dissipation, the upper limit of the possible hourly energy capacity of the shock absorber increases significantly.

In addition, the air-oil tank provides an opportunity for controlled piston return if no permanent return force through an integrated spring in the shock absorber is desired.

Air/Oil Tanks AO

AO1 Oil capacity 0.6 oz. Material: Aluminium caps


Detail drawings on request

AO3 Oil capacity 12.5 oz. Material: Steel

Oil capacity 88 oz. Material: Steel

A06

Technical Data

Operating pressure: Max. 8 bar (116 psi)
Operating temperature range: 176 °F
Damping medium: ATF-Oil 42 cSt at 104 °F
Mount air/oil tank higher than shock absorber.
Bleed all air from system before operating.

Safety instructions: Exhaust tank before carrying out service. Check valve holds pressure!

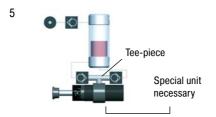
Suggested air/oil tanks in accordance with E4 ratings

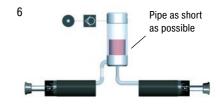
Air/Oil Tanks and Check Valves

Connection Examples

Check valve
- CV - Pipe as short as possible,
Max. pressure
8 bar (116 psi)

Piston rod returns immediately to extended position when load moves away. Operation without main air supply possible for short periods.


Return stroke may be sequenced by pneumatic valve at any desired time. No return force until valve energised.

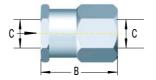

Return force can be adjusted by pressure regulator. Ensure safe minimum pressure to return shock absorber.

Spring return with air/oil tank. No air supply connected. Note: Will extend return time.

Oil recirculation circuit for extreme high cycle rates. Warm oil is positively circulated through air/oil tank for increased heat dissipation.

Connection of two shock absorbers to one air/oil tank is possible. Use next larger size tank. Combination with examples 2, 3 and 5 possible.

Selection Chart Air/Oil Tanks										
	With Tank Example 1 to 4			Recirc. Circuits ample 5 to 6	Min. Conn. Pipe Ø	Thread Sizes for Connection to Air/Oil Tank				
						Thread	² Thread			
Shock Absorber Type	Tank	Check Valve	Tank	Check Valve	inch	Bottom	Side			
MCA, MAA, MLA33	AO1	CV1/8	AO3	CV1/4	0.16	1 1/8-27 NPTF inside	1/8-27 NPTF inside			
MCA, MAA, MLA45	AO1	CV1/8	AO3	CV3/8	0.24	1/8-27 NPTF inside	1/8-27 NPTF inside			
MCA, MAA, MLA64	AO3	CV1/4	A06	CV3/4	0.31	1/4-18 NPTF inside	1/4-18 NPTF inside			
CAA, AA2	A06	CV3/4	AO82	CV3/4	0.59	_	_			
CAA, AA3	A06	CV3/4	AO82	CV3/4	0.75	_	-			
CAA4	AO82	CV3/4	AO82	CV3/4	1.50	_	-			


AO82 and connection accessories: Details on request

1 adapted

Check Valves CV

Through an oil circuit fresh oil is drawn in from the industrial shock absorber and warm oil is pumped off (see example 5). To obtain this function, ACE offers suitable check valves of the CV series.

Technical Data

Operating pressure: 20 bar (290 psi)
Operating temperature range: 203 °F

Suitable for: Oil, air, water Material: Aluminium

Check Valves — Dimensions									
	Α	В	С						
TYPES	inch	inch							
CV1/8	0.75	0.94	1/8-27 NPT						
CV1/4	1.14	1.30	1/4-18 NPT						
CV3/8	1.14	1.30	3/8-18 NPT						
CV1/2	1.61	1.57	1/2-14 NPT						
CV3/4	1.89	2.32	3/4-14 NPT						

Issue 04.2018 - Specifications subject to change

² on request (add suffix -PG/-P)

Profile Dampers

The low cost alternative for continuous duty

The exceedingly successful TUBUS series from ACE is a perfect alternative, when masses don't need to be decelerated to an exact point. Available in more than 140 different versions, the profile dampers are used to slow down masses, particularly under extreme conditions.

They are also recommended for use if there is little installation space available. Manufactured in co-polyester elastomer, the highly resistant absorbers provide the best benefits in areas where other materials fail or where a high service life of up to 1 million cycles is required. They are affordable, compact, light and absorb energy with different damping characteristics depending on the design.

Competitive price/performance ratio

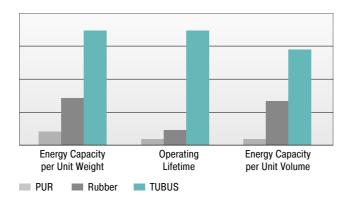
Reliable in extreme situations

Highly resistant material

Compact and lightweight design

Easy to mount

Long service life


Physical Properties of TUBUS Profile Dampers

ACE TUBUS profile dampers are high performance damping elements made from a special Co-Polyester Elastomer. They have a high energy absorbing capacity compared with other materials.

The excellent damping characteristics are achieved as a result of the special elastomer material and the worldwide unique construction design. This enables us to change the characteristics of the elastomer material so that individual and distinct damping curves are possible.

TUBUS dampers offer a considerable performance advantage when compared to other materials such as rubber, urethanes (PUR) and steel springs.

An advantage over other damping elements is TUBUS' operating life expectancy — up to twenty times longer than with urethane dampers, up to ten times longer than with rubber dampers and up to five times longer than with steel spring dampers.

Comparison of Damping Characteristics

The innovative TUBUS dampers absorb energy while exhibiting the following damping characteristics:

Product family TA

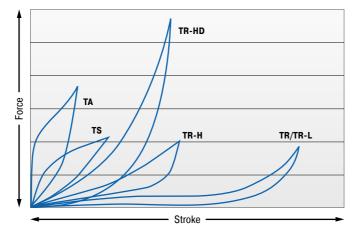
Degressive characteristic with max. energy absorption with min. stroke.

Energy absorption: 58 % to 73 %

Product family TS

Almost linear characteristic with low reaction force over a short operating stroke.

Energy absorption: 35 % to 64 % Product family TR/TR-L/TR-H


Progressive characteristic with gradually increasing reaction force over a long stroke.

Energy absorption TR: 25 % to 45 % Energy absorption TR-L: 26 % to 41 % Energy absorption TR-H: 39 % to 62 %

Product family TR-HD

Progressive characteristic with high energy absorption with a short stroke.

Energy absorption: 43 % to 72 %

Characteristics of dynamic energy absorption for impact velocity over 1.64 ft/s.

or impact velocities under 1.64 ft/s, please request a static characteristic curve.

TUBUS TA, TS, TR, TR-H, TR-HD											
	Max. Ener	gy Capacity									
	1 E ₃	Emergency Stop E _₃	Stroke max.	Page							
TYPES	in-lbs/cycle	in-lbs/cycle	inch								
TA12-5 TA17-7	17.7 53.1	26.6 79.7	0.20 0.28	117 117							
TA21-9	88.5	142	0.26	117							
TA22-10	102	186	0.39	117							
TA28-12	257	407	0.47	117							
TA34-14 TA37-16	425 575	770 991	0.55 0.63	117 117							
TA40-16	726	1,151	0.63	117							
TA43-18	991	1,460	0.71	117							
TA47-20	1,239	1,531	0.79	117							
TA50-22 TA54-22	1,505 1,779	1,974 2,956	0.87 0.87	117 117							
TA57-24	2,142	2,673	0.94	117							
TA62-25	2,691	3,195	0.98	117							
TA65-27 TA70-29	3,310 3,726	4,142 4,638	1.06 1.14	117 117							
TA72-31	4,266	4,948	1.22	117							
TA80-32	5,045	7,355	1.26	117							
TA82-35	6,045	8,152	1.38	117							
TA85-36 TA90-38	7,054 8,267	9,231 11,055	1.42 1.50	117 117							
TA98-40	10,152	13,763	1.57	117							
TA116-48	17,825	26,119	1.89	117							
TS14-7	17.7 35.4	26.6	0.28	119 119							
TS18-9 TS20-10	53.1	53.1 62.0	0.35 0.39	119							
TS26-15	102	133	0.59	119							
TS32-16	204	230	0.63	119							
TS35-19 TS40-19	266 301	319 372	0.75 0.75	119 119							
TS41-21	425	558	0.73	119							
TS44-23	558	637	0.91	119							
TS48-25	717	805	0.98	119							
TS51-27 TS54-29	814 1,080	1,009 1,398	1.06 1.14	119 119							
TS58-30	1,319	1,363	1.18	119							
TS61-32	1,443	1,496	1.26	119							
TS64-34 TS68-36	1,841 2,009	2,248 2,407	1.34 1.42	119 119							
TS75-39	2,576	3,611	1.54	119							
TS78-40	3,115	4,062	1.57	119							
TS82-44	3,708	5,487	1.73	119							
TS84-43 TS90-47	4,204 5,133	5,620 6,886	1.69 1.85	119 119							
TS107-56	7,983	8,550	2.20	119							
TR29-17	10.6	15.9	0.67	121							
TR37-22 TR43-25	20.4 31.0	47.8 71.7	0.87 0.98	121 121							
TR50-35	51.3	73.4	1.38	121							
TR63-43	106	150	1.69	121							
TR67-40	204	292	1.57	121							
TR76-46 TR83-50	305 398	381 655	1.81 1.97	121 121							
TR85-50	602	814	1.97	121							
TR93-57	814	1,080	2.24	121							
TR100-60 TR30-15H	1,018 23.9	1,292 50.5	2.36 0.59	121							
TR39-19H	53.1	159	0.75	123							
TR45-23H	77.0	212	0.91	123							
TR52-32H TR64-41H	104 221	177 407	1.26 1.61	123 123							
TR68-37H	589	867	1.46	123							
TR79-42H	721	938	1.65	123							
TR86-45H	1,097	1,823	1.77	123							
TR87-46H TR95-50H	1,398 2,018	2,310 3,027	1.81 1.97	123 123							
TR102-56H	2,567	3,779	2.20	123							
TR42-14HD	3,585	5,018	0.58	127							
TR47-12HD	7,585	10,621	0.48	127							
TR47-17HD TR52-14HD	7,523 14,462	10,532 20,250	0.67 0.47	127 127							
TR57-21HD	10,568	14,798	0.86	127							

TUBUS TA,	TUBUS TA, TS, TR, TR-H, TR-HD												
	Max. Energ	gy Capacity											
		Emergency Stop											
TYPES	¹ E ₃ in-lbs/cycle	E₃ in-lbs/cycle	Stroke max. inch	Page									
TR62-15HD	15,843	22,180	0.62	127									
TR62-19HD	26,021	36,430	0.66	127									
TR63-24HD	18,241	25,534	0.97	127									
TR72-26HD	15,046	21,065	1.04	127									
TR79-20HD	24,729	34,624	0.82	127									
TR79-31HD	26,331	36,863	1.17	127									
TR85-33HD	22,357	31,296	1.26	127									
TR89-21HD	39,280	54,990	0.85	127									
TR90-37HD	33,456	46,838	1.48	127									
TR93-24HD	30,278	42,386	0.96	127									
TR97-31HD	68,487	95,880	1.00	127									
TR97-35HD	24,968	34,952	1.50	127									
TR102-44HD	41,572	58,202	1.74	127									
TR105-28HD	49,927	69,894	1.02	127									
TR117-30HD	74,851	104,793	1.09	127									

¹ Max. energy capacity per cycle for continous use.

TUBUS TR-L	_			
	Max. Energ	gy Capacity		
		Emergency Stop		
TYPES	¹ E ₃ in-lbs/cycle	E₃ in-lbs/cycle	Stroke max. inch	Page
TR29-17L	63.7	96	0.67	125
TR43-25L	124	289	0.98	125
TR63-43L	194	283	1.69	125
TR66-40L-1	903	1,266	1.57	125
TR66-40L-2	1,806	2,531	1.57	125
TR66-40L-3	2,708	3,788	1.57	125
TR66-40L-4	3,611	5,054	1.57	125
TR66-40L-5	4,514	6,319	1.57	125
TR76-45L-1	1,283	1,797	1.77	125
TR76-45L-2	2,567	3,593	1.77	125
TR76-45L-3	3,850	5,390	1.77	125
TR76-45L-4	5,133	7,187	1.77	125
TR76-45L-5	6,417	8,984	1.77	125
TR83-48L-1	1,593	2,230	1.89	125
TR83-48L-2	3,186	4,461	1.89	125
TR83-48L-3	4,779	6,691	1.89	125
TR83-48L-4	6,373	8,922	1.89	125
TR83-48L-5	7,966	11,152	1.89	125
TR99-60L-1	2,390	3,346	2.36	125
TR99-60L-2	4,779	6,691	2.36	125
TR99-60L-3	7,169	10,037	2.36	125
TR99-60L-4	9,559	13,382	2.36	125
TR99-60L-5	11,949	16,728	2.36	125
TR99-60L-6	14,338	20,073	2.36	125
TR99-60L-7	16,728	23,419	2.36	125
TR143-86L-1	5,310	7,435	3.39	125
TR143-86L-2	10,621	14,869	3.39	125
TR143-86L-3	15,931	22,304	3.39	125
TR143-86L-4	21,242	29,738	3.39	125
TR143-86L-5	26,552	37,173	3.39	125
TR143-86L-6	31,863	44,608	3.39	125
TR143-86L-7	37,173	52,042	3.39	125
TR188-108L-1	9,736	13,630	4.25	125
TR188-108L-2	19,472	27,260	4.25	125
TR188-108L-3	29,207	40,890	4.25	125
TR188-108L-4	38,943	54,521	4.25	125
TR188-108L-5	48,679	68,151	4.25	125
TR188-108L-6	58,415	81,781	4.25	125
TR188-108L-7	68,151	95,411	4.25	125
1 May aparay oar	nacity per cycle for co	entinous uso		

¹ Max. energy capacity per cycle for continous use.

Profile Dampers

TUBUS TA Page 116

Axial Damping

Compact size and strong force absorption

Linear slides, Pneumatic cylinders, Handling modules, Machines and plants

TUBUS TS Page 118

Axial Soft Damping

Compact size and smooth deceleration

Linear slides, Pneumatic cylinders, Handling modules, Machines and plants

TUBUS TR Page 120

Radial Damping

Compact size and soft deceleration

Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders

TUBUS TR-H Page 122

Radial Damping, Hard Version

Compact size with soft deceleration and high energy absorption

Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders

TUBUS TR-L Page 124

Radial Damping, Long Version **Powerhouse in long body length**Offshore industry, Agricultural machinery, Impact panels,
Conveyor systems

TUBUS TR-HD Page 126

Radial Damping, Heavy Duty Version

Compact powerhouse in solid material

Offshore industry, Agricultural machinery, Impact panels,
Conveyor systems

TUBUS TA

Compact size and strong force absorption

Axial Damping

Energy capacity 17.7 in-lbs/Cycle to 17,825 in-lbs/Cycle

Maximum stroke 0.20 in to 1.89 in

Very efficient energy guzzlers: The TA profile dampers from the ACE TUBUS-Series are maintenance-free and ready to install. They're made of co-polyester elastomer; a material that only heats up slightly and ensures consistent damping. The TA models absorbs most of the energy at the start of the stroke.

The TA family has been specially developed for maximum energy absorption within a range of 18 in-lbs to 26,119 in-lbs. (2 Nm to 2,951 Nm). These dampers have a minimum height is thanks to the space-saving shape, with Ø 0.47° to Ø 4.57° (Ø 12 mm to Ø 116 mm). The dampers can be very easily and quickly installed with the provided special screw.

These compact, cost-effective dampers are ideal as end position dampers in linear axes, in toolmaking and tool machines, in hydraulic and pneumatic equipment, handling equipment and other applications.

Technical Data

Energy capacity: 17.7 in-lbs/Cycle to

17,825 in-lbs/Cycle

Energy absorption: 58% to 73%

Dynamic force range: 196 lbs to 20,233 lbs

Operating temperature range: -40 °F to

194 °F

Construction size: 0.47 in to 4.57 in

Mounting: In any position

Material hardness rating: Shore 55D **Material:** Profile body: Co-Polyester

Elastomer

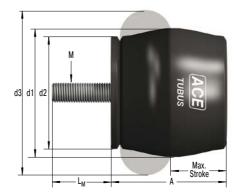
Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 16.4 ft/sec

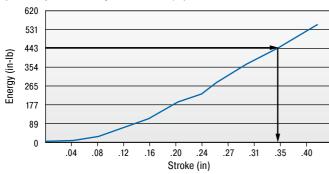
Torque max.:

M3: 0.74 ft-lbs M4: 1.25 ft-lbs M5: 1.70 ft-lbs M6: 4.43 ft-lbs M8: 14.75 ft-lbs M12: 36.88 ft-lbs M16: 88.51 ft-lbs Application field: Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Swivel units, Electro-mechanical drives, Hydraulic devices, Conveyor systems, Crane systems

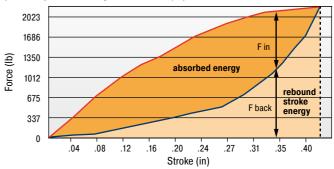
Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


Axial Damping

TA



Characteristics

Type TA37-16 Energy-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)

Type TA37-16 Force-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 443 lbs the Energy-Stroke diagram shows that a stroke of about 0.35 in is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 1.64 ft/s) and static ($v \le 1.64$ ft/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

		Emergency Stop								
TYPES	¹ E₃ in-lbs/cycle	E ₃ in-lbs/cycle	Stroke max. inch	A inch	d1 inch	d2 inch	d3 inch	L _M inch	М	Weight Ibs
ΓA12-5	17.7	26.6	0.20	0.43	0.47	0.43	0.59	0.12	М3	0.003
TA17-7	53.1	79.7	0.28	0.63	0.67	0.59	0.87	0.16	M4	0.013
ΓA21-9	88.5	142	0.35	0.71	0.83	0.71	1.02	0.20	M5	0.038
ΓA22-10	102	186	0.39	0.75	0.87	0.75	1.06	0.24	М6	0.019
A28-12	257	407	0.47	1.02	1.10	0.98	1.42	0.24	М6	0.035
ΓA34-14	425	770	0.55	1.18	1.34	1.18	1.69	0.24	М6	0.052
TA37-16	575	991	0.63	1.30	1.46	1.30	1.89	0.24	М6	0.067
ΓA40-16	726	1,151	0.63	1.38	1.57	1.34	1.97	0.31	M8	0.088
A43-18	991	1,460	0.71	1.50	1.69	1.50	2.17	0.31	M8	0.113
A47-20	1,239	1,531	0.79	1.61	1.85	1.61	2.36	0.47	M12	0.154
ΓA50-22	1,505	1,974	0.87	1.77	1.97	1.73	2.52	0.47	M12	0.187
A54-22	1,779	2,956	0.87	1.85	2.13	1.85	2.68	0.47	M12	0.220
A57-24	2,142	2,673	0.94	2.01	2.24	1.97	2.87	0.47	M12	0.256
A62-25	2,691	3,195	0.98	2.13	2.44	2.09	3.07	0.47	M12	0.291
A65-27	3,310	4,142	1.06	2.28	2.56	2.24	3.23	0.47	M12	0.338
A70-29	3,726	4,638	1.14	2.40	2.76	2.36	3.39	0.47	M12	0.385
TA72-31	4,266	4,948	1.22	2.56	2.83	2.48	3.58	0.63	M16	0.566
TA80-32	5,045	7,355	1.26	2.72	3.15	2.72	3.94	0.63	M16	0.687
TA82-35	6,045	8,152	1.38	2.91	3.23	2.83	4.13	0.63	M16	0.773
A85-36	7,054	9,231	1.42	2.99	3.35	2.95	4.33	0.63	M16	0.863
A90-38	8,267	11,055	1.50	3.15	3.54	3.07	4.49	0.63	M16	0.912
A98-40	10,152	13,763	1.57	3.39	3.86	3.35	4.84	0.63	M16	1.131
A116-48	17,825	26,119	1.89	3.98	4.57	3.86	5.75	0.63	M16	1.770

¹ Max. energy capacity per cycle for continous use.

TUBUS TS

Compact size and smooth deceleration

Axial Soft Damping

Energy capacity 17.7 in-lbs/Cycle to 7,983 in-lbs/Cycle

Maximum stroke 0.28 in to 2.20 in

Energy absorption in a compact and uniform way: The TS (TUBUS soft) profile dampers are also manufactured from co-polyester elastomer. Due to the almost linear damping characteristic curve, the maintenance-free, ready-to-install components softly absorb the energy with minimum stress on the machine. Consistent damping is helped by the low temperature increase of the material during operation.

The TS product family impresses with maximum energy absorption within a range of 17.7 in-lbs to 8,549 in-lbs (2 Nm to 966 Nm) within a minimum height. The space-saving design has been implemented from Ø 0.55" to Ø 4.21" (Ø 14 mm to Ø 107 mm). The special screw supplied is used to simply and quickly secure the profile dampers in place.

Suitable for emergency stop and permanent applications, the cost-effective, durable TUBUS TS can be used as end position dampers in linear axes, in tool making and tool machines and in hydraulic, pneumatic and handling equipment.

Technical Data

Energy capacity: 17.7 in-lbs/Cycle to

7,983 in-lbs/Cycle

Energy absorption: 35 % to 64 %

Dynamic force range: 120 lbs to 5,283 lbs

Operating temperature range: -40 °F to

194 °F

Construction size: 0.55 in to 4.21 in

Mounting: In any position

Material hardness rating: Shore 40D Material: Profile body: Co-Polyester

Elastomer

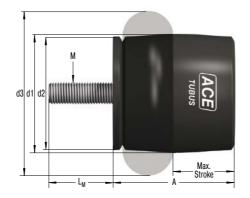
Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 16.4 ft/sec

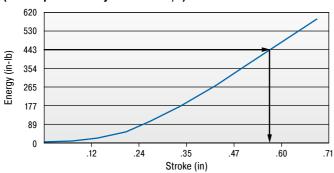
Torque max.: M4: 1.25 ft-lbs

M5: 1.70 ft-lbs M6: 4.43 ft-lbs M12: 36.88 ft-lbs M16: 88.51 ft-lbs Application field: Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Swivel units, Electro-mechanical drives, Crane systems, Conveyor systems

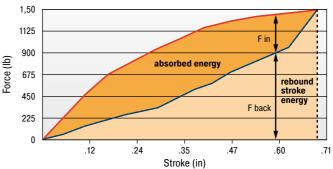
Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

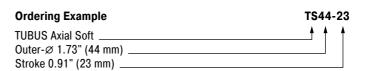

Axial Soft Damping

TS



Characteristics

Type TS44-23 Energy-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)


Type TS44-23 Force-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 443 lbs the Energy-Stroke diagram shows that a stroke of about 0.55 in is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Dynamic (v \geq 1.64 ft/s) and static (v \leq 1.64 ft/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Performand	e and Dimensions	6								
		Emergency Stop								
TYPES	¹ E₃ in-lbs/cycle	E₃ in-lbs/cycle	Stroke max. inch	A inch	d1 inch	d2 inch	d3 inch	L _M inch	М	Weight Ibs
TS14-7	17.7	26.6	0.28	0.59	0.55	0.51	0.75	0.16	M4	0.015
TS18-9	35.4	53.1	0.35	0.71	0.71	0.63	0.94	0.20	M5	0.017
TS20-10	53.1	62.0	0.39	0.83	0.79	0.75	1.06	0.24	М6	0.017
TS26-15	102	133	0.59	1.10	1.02	0.98	1.46	0.24	М6	0.032
TS32-16	204	230	0.63	1.26	1.26	1.18	1.73	0.24	М6	0.046
TS35-19	266	319	0.75	1.42	1.38	1.30	1.89	0.24	М6	0.062
TS40-19	301	372	0.75	1.50	1.57	1.34	2.01	0.24	М6	0.068
TS41-21	425	558	0.83	1.61	1.61	1.50	2.17	0.47	M12	0.132
TS44-23	558	637	0.91	1.77	1.73	1.57	2.36	0.47	M12	0.154
TS48-25	717	805	0.98	1.93	1.89	1.73	2.52	0.47	M12	0.176
TS51-27	814	1,009	1.06	2.05	2.01	1.85	2.72	0.47	M12	0.209
TS54-29	1,080	1,398	1.14	2.17	2.13	1.97	2.87	0.47	M12	0.231
TS58-30	1,319	1,363	1.18	2.32	2.28	2.09	3.07	0.47	M12	0.266
TS61-32	1,443	1,496	1.26	2.44	2.40	2.20	3.27	0.63	M16	0.448
TS64-34	1,841	2,248	1.34	2.60	2.52	2.36	3.43	0.63	M16	0.512
TS68-36	2,009	2,407	1.42	2.72	2.68	2.48	3.62	0.63	M16	0.546
TS75-39	2,576	3,611	1.54	2.95	2.95	2.72	3.98	0.63	M16	0.664
TS78-40	3,115	4,062	1.57	3.11	3.07	2.83	4.13	0.63	M16	0.732
TS82-44	3,708	5,487	1.73	3.31	3.23	2.95	4.33	0.63	M16	0.762
TS84-43	4,204	5,620	1.69	3.35	3.31	3.07	4.53	0.63	M16	0.886
TS90-47	5,133	6,886	1.85	3.62	3.54	3.31	4.88	0.63	M16	1.286
TS107-56	7,983	8,550	2.20	4.33	4.21	3.94	5.79	0.63	M16	1.616

¹ Max. energy capacity per cycle for continous use.

TUBUS TR

Compact size and soft deceleration

Radial Damping

Energy capacity 10.6 in-lbs/Cycle to 1,018 in-lbs/Cycle

Maximum stroke 0.67 in to 2.36 in

For long, soft braking action: The TUBUS TR models deliver linear damping forces. These maintenance-free, ready-to-install elements are made of co-polyester elastomer, which only heats up slightly during operation and therefore provides consistent damping.

The radial loading enables a very long and soft deceleration with progressive energy reduction at the end of the stroke. The TR product family has been specially designed for maximum stroke with a minimum height, producing energy absorption per stroke extending from 10.6 in-lbs to 1,292 in-lbs. (1.2 Nm to 146 Nm). The dampers are available in compact formats of Ø 1.14" to Ø 3.94" (Ø 29 mm to Ø 100 mm) and are supplied with a special screw for simple, quick assembly.

The TUBUS TR products are suitable as end position dampers in linear axes, in tool making and tool machines, in hydraulic and pneumatic equipment, handling equipment and other applications.

Technical Data

Energy capacity: 10.6 in-lbs/Cycle to

1,018 in-lbs/Cycle

Energy absorption: 25 % to 45 %

Dynamic force range: 49 lbs to 1,686 lbs

Operating temperature range: -40 °F to

194 °F

Construction size: 1.14 in to 3.93 in

Mounting: In any position

Material hardness rating: Shore 40D Material: Profile body: Co-Polyester

Elastomer

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

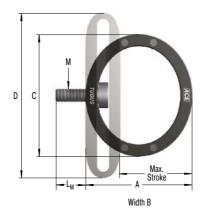
Impact velocity range: Max. 16.4 ft/sec

Torque max.: M5: 2.21 ft-lbs

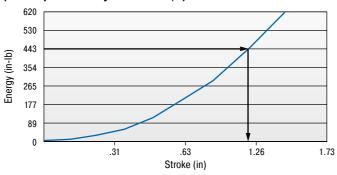
M6: 4.43 ft-lbs M8: 14.75 ft-lbs

Application field: Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Stacking units, Electro-mechanical drives, Conveyor systems, Dock constructions for shipbuilding

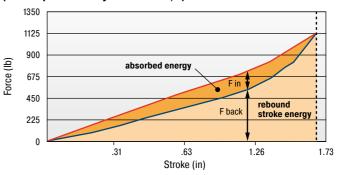
Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

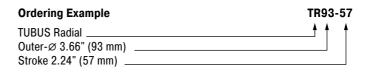

Radial Damping

TR



Characteristics

Type TR93-57 Energy-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)



Type TR93-57
Force-Stroke Characteristic (dynamic)
(with impact velocity over 1.64 ft/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 443 lbs the Energy-Stroke diagram shows that a stroke of about 1.22 in is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 1.64 ft/s) and static ($v \le 1.64$ ft/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

e and Dimensions	S								
	Emergency Stop								
¹ E ₃ in-lbs/cycle	E₃ in-lbs/cycle	Stroke max. inch	A inch	B inch	C inch	D inch	L _M inch	М	Weight Ibs
10.6	15.9	0.67	0.98	0.51	1.14	1.50	0.20	M5	0.015
20.4	47.8	0.87	1.26	0.75	1.46	1.97	0.20	M5	0.028
31.0	71.7	0.98	1.46	0.79	1.69	2.28	0.20	M5	0.038
51.3	73.4	1.38	1.73	1.34	1.97	2.68	0.20	M5	0.048
106	150	1.69	2.17	1.69	2.48	3.43	0.20	M5	0.112
204	292	1.57	2.32	1.81	2.64	3.46	0.20	M5	0.170
305	381	1.81	2.64	1.81	2.99	4.02	0.24	М6	0.230
398	655	1.97	2.87	2.01	3.27	4.29	0.24	М6	0.313
602	814	1.97	2.87	2.68	3.35	4.37	0.31	M8	0.455
814	1,080	2.24	3.27	3.27	3.66	4.88	0.31	M8	0.655
1,018	1,292	2.36	3.46	3.23	3.94	5.24	0.31	M8	0.679
	¹ E ₃ in-lbs/cycle 10.6 20.4 31.0 51.3 106 204 305 398 602 814	I E ₃ E ₃ in-lbs/cycle in-lbs/cycle 10.6 15.9 20.4 47.8 31.0 71.7 51.3 73.4 106 150 204 292 305 381 398 655 602 814 814 1,080	I Energency Stop Emergency Stop in-lbs/cycle E 3 in-lbs/cycle Stroke max. inch 10.6 15.9 0.67 20.4 47.8 0.87 31.0 71.7 0.98 51.3 73.4 1.38 106 150 1.69 204 292 1.57 305 381 1.81 398 655 1.97 602 814 1.97 814 1,080 2.24	Emergency Stop Emergency Stop E Stroke max. A in-lbs/cycle inch inch inch	Emergency Stop Emergency Stop E Emergency Stop E E Stroke max. A B in-lbs/cycle inch inch inch inch 10.6 15.9 0.67 0.98 0.51 20.4 47.8 0.87 1.26 0.75 31.0 71.7 0.98 1.46 0.79 51.3 73.4 1.38 1.73 1.34 106 150 1.69 2.17 1.69 204 292 1.57 2.32 1.81 305 381 1.81 2.64 1.81 398 655 1.97 2.87 2.01 602 814 1.97 2.87 2.68 814 1,080 2.24 3.27 3.27	Emergency Stop	Emergency Stop Emergency Stop E Emergency Stop E E S Stroke max. A B C D Inch I	Emergency Stop	Emergency Stop

¹ Max. energy capacity per cycle for continous use.

TUBUS TR-H

Compact size with soft deceleration and high energy absorption

Radial Damping, Hard Version

Maximum stroke 0.59 in to 2.20 in

Harder mixture of materials for higher energy absorption: The maintenance-free and readyto-install TR-H profile dampers, are stressed radially in the same way as the basic TR model. With almost the same dimensions, they also decelerate with a very long and soft action. The harder co-polyester elastomer mixture leads to significantly high energy absorption of 23.9 in-lbs to 3,779 in-lbs (2.7 Nm to 427 Nm) in these models. The supplied special screw makes them easy to mount.

The TR-H product family is space-saving with dimensions of Ø 1.18" to Ø 4.02" (Ø 30 mm to Ø 102 mm). It complements the TUBUS range between the progressive TR and almost linear TS models. Users are therefore provided with a full range of deceleration curves within the ACE TUBUS family.

The TUBUS TR-H products are suitable end position dampers in linear axes, in tool making and tool machines and in hydraulic, pneumatic and handling equipment as well as other applications.

Technical Data

Energy capacity: 23.9 in-lbs/Cycle to

2,567 in-lbs/Cycle

Energy absorption: 39 % to 62 %

Dynamic force range: 124 lbs to 4,766 lbs Operating temperature range: -40 °F to

194 °F

Construction size: 1.18 in to 4.01 in

Mounting: In any position

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester

Elastomer

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

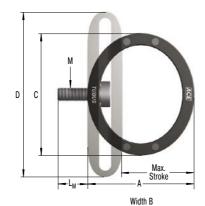
Impact velocity range: Max. 16.4 ft/sec

Torque max.: M5: 2.21 ft-lbs M6: 4.43 ft-lbs M8: 14.75 ft-lbs

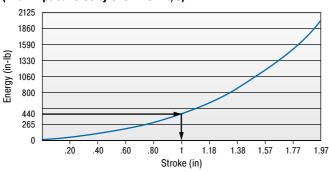
Application field: Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Stacking units, Electro-mechanical drives, Conveyor systems, Dock constructions for shipbuilding

Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

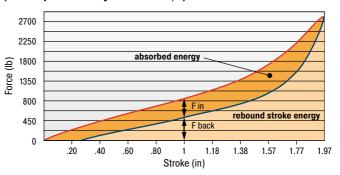
Safety information: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Radial Damping, Hard Version

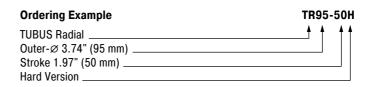


TR-H



Characteristics

Type TR95-50H **Energy-Stroke Characteristic (dynamic)** (with impact velocity over 1.64 ft/s)



Type TR95-50H Force-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 443 lbs the Energy-Stroke diagram shows that a stroke of about 0.98 in is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 1.64 ft/s) and static ($v \le 1.64$ ft/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Performance	and Dimensions	S								
		Emergency Stop								
TYPES	¹ E₃ in-lbs/cycle	E ₃ in-lbs/cycle	Stroke max. inch	A inch	B inch	C inch	D inch	L _M inch	М	Weight Ibs
TR30-15H	23.9	50.5	0.59	0.91	0.51	1.18	1.50	0.20	M5	0.013
TR39-19H	53.1	159	0.75	1.18	0.75	1.54	1.97	0.20	M5	0.029
TR45-23H	77.0	212	0.91	1.42	0.79	1.77	2.28	0.20	M5	0.042
TR52-32H	104	177	1.26	1.65	1.34	2.05	2.68	0.20	M5	0.060
TR64-41H	221	407	1.61	2.09	1.69	2.52	3.43	0.20	M5	0.119
TR68-37H	589	867	1.46	2.20	1.81	2.68	3.46	0.20	M5	0.183
TR79-42H	721	938	1.65	2.52	1.81	3.11	4.02	0.24	М6	0.235
TR86-45H	1,097	1,823	1.77	2.72	2.01	3.39	4.29	0.24	М6	0.334
TR87-46H	1,398	2,310	1.81	2.68	2.64	3.39	4.37	0.31	M8	0.446
TR95-50H	2,018	3,027	1.97	3.03	3.23	3.74	4.88	0.31	М8	0.619
TR102-56H	2,567	3,779	2.20	3.31	3.19	4.02	5.24	0.31	M8	0.736

¹ Max. energy capacity per cycle for continous use.

TUBUS TR-L

Powerhouse in long body length

Radial Damping, Long Version Energy capacity 63.7 in-lbs/Cycle to 68,151 in-lbs/Cycle Maximum stroke 0.67 in to 4.25 in

Designed for applications with long and soft deceleration: The ACE TUBUS range TR-L radial tube dampers are maintenance-free, ready-to-install elements made of co-polyester elastomer.

Their radial load offers designers a very long and soft deceleration with a progressive reduction in energy at the end of the stroke. The TR-L range has been specially developed for a maximum stroke with a minimum height and a range of 63.7 in-lbs to 95,411 in-lbs (7.2 Nm to 10,780 Nm). The absorption capacity is dependent on the length of the selected tube damper. These models are available in sizes between Ø 1.14" and Ø 46.77". (Ø 29 mm and Ø 188 mm).

The TUBUS TR-L is used where impact or collision protection is necessary along a straight line e.g. on shovels in mining equipment, loading and lifting devices, dock systems in shipbuilding or luggage and transport belts.

Technical Data

Energy capacity: 63.7 in-lbs/Cycle to

68,151 in-lbs/Cycle

Energy absorption: 26 % to 41 %

Dynamic force range: 295 lbs to 48,941 lbs

Operating temperature range: -40 °F to

194 °F

Construction size: 1.14 in to 7.40 in

Mounting: In any position

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester

Elastomer

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 16.4 ft/sec

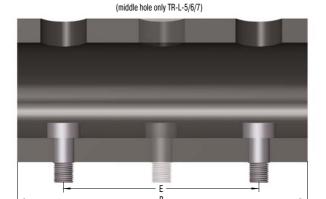
Torque max.: M5: 2.21 ft-lbs M8: 14.75 ft-lbs

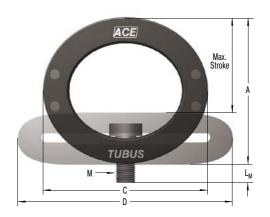
M16: 29.50 ft-lbs (DIN912)

M16: 88.51 ft-lbs (Shouldered screw)

Application field: Offshore industry, Agricultural machinery, Impact panels, Conveyor systems, Stacking units, Shipbuilding, Shovels or articulated joints for construction machinery, Transport roads, Loading and lifting

equipment


Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Radial Damping, Long Version

TR-L

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Performance and Dimensions

Ordering Example	TR66-40L-2
TUBUS Radial	
Outer-Ø 2.60" (66 mm)	
Stroke 1.57" (40 mm)	
Long Version	
Length 2 = 12.01" (305 mm)	

		Emergency Stop									
	1 E ₃	E ₃	Stroke max.	Α	В	С	D	E	L _M	М	Weight
TYPES	in-lbs/cycle	in-lbs/cycle	inch	inch	inch	inch	inch	inch	inch		lbs
ΓR29-17L	63.7	96	0.67	0.98	3.15	1.14	1.50	1.57	0.20	M5	0.064
TR43-25L	124	289	0.98	1.46	3.15	1.69	2.28	1.57	0.20	M5	0.135
R63-43L	194	283	1.69	2.17	3.15	2.48	3.43	1.57	0.20	M5	0.223
R66-40L-1	903	1,266	1.57	2.32	5.98	2.60	3.43	4.02	0.31	M8	0.627
R66-40L-2	1,806	2,531	1.57	2.32	12.01	2.60	3.43	10.00	0.31	M8	1.279
R66-40L-3	2,708	3,788	1.57	2.32	17.99	2.60	3.43	15.98	0.31	М8	1.784
R66-40L-4	3,611	5,054	1.57	2.32	24.02	2.60	3.43	22.01	0.31	M8	2.347
R66-40L-5	4,514	6,319	1.57	2.32	30.00	2.60	3.43	27.99	0.31	M8	2.963
R76-45L-1	1,283	1,797	1.77	2.68	5.98	2.99	3.94	4.02	0.31	M8	0.838
R76-45L-2	2,567	3,593	1.77	2.68	12.01	2.99	3.94	10.00	0.31	M8	1.535
R76-45L-3	3,850	5,390	1.77	2.68	17.99	2.99	3.94	15.98	0.31	M8	2.492
R76-45L-4	5,133	7,187	1.77	2.68	24.02	2.99	3.94	22.01	0.31	М8	3.153
R76-45L-5	6,417	8,984	1.77	2.68	30.00	2.99	3.94	27.99	0.31	M8	4.013
R83-48L-1	1,593	2,230	1.89	2.87	5.98	3.27	4.17	4.02	0.31	М8	1.058
R83-48L-2	3,186	4,461	1.89	2.87	12.01	3.27	4.17	10.00	0.31	M8	1.917
R83-48L-3	4,779	6,691	1.89	2.87	17.99	3.27	4.17	15.98	0.31	М8	3.043
R83-48L-4	6,373	8,922	1.89	2.87	24.02	3.27	4.17	22.01	0.31	M8	3.991
R83-48L-5	7,966	11,152	1.89	2.87	30.00	3.27	4.17	27.99	0.31	М8	4.983
R99-60L-1	2,390	3,346	2.36	3.46	5.98	3.90	5.12	4.02	0.31	M8	1.299
R99-60L-2	4,779	6,691	2.36	3.46	12.01	3.90	5.12	10.000	0.31	M8	2.567
R99-60L-3	7,169	10,037	2.36	3.46	17.99	3.90	5.12	15.98	0.31	M8	4.278
R99-60L-4	9,559	13,382	2.36	3.46	24.02	3.90	5.12	22.01	0.31	М8	5.865
R99-60L-5	11,949	16,728	2.36	3.46	30.00	3.90	5.12	27.99	0.31	M8	6.836
R99-60L-6	14,338	20,073	2.36	3.46	35.98	3.90	5.12	34.02	0.31	M8	8.255
R99-60L-7	16,728	23,419	2.36	3.46	42.01	3.90	5.12	40.00	0.31	M8	9.482
R143-86L-1	5,310	7,435	3.39	5.00	5.98	5.63	7.52	2.99	0.87	M16	3.462
R143-86L-2	10,621	14,869	3.39	5.00	12.01	5.63	7.52	7.99	0.87	M16	6.262
R143-86L-3	15,931	22,304	3.39	5.00	17.99	5.63	7.52	13.98	0.87	M16	8.555
R143-86L-4	21,242	29,738	3.39	5.00	24.02	5.63	7.52	20.00	0.87	M16	11.951
R143-86L-5	26,552	37,173	3.39	5.00	30.00	5.63	7.52	25.98	0.87	M16	15.589
R143-86L-6	31,863	44,608	3.39	5.00	35.98	5.63	7.52	31.97	0.87	M16	18.456
R143-86L-7	37,173	52,042	3.39	5.00	42.01	5.63	7.52	37.99	0.87	M16	20.903
R188-108L-1	9,736	13,630	4.25	6.50	5.98	7.40	9.65	2.99	1.02	M16	5.465
R188-108L-2	19,472	27,260	4.25	6.50	12.01	7.40	9.65	7.99	1.02	M16	8.897
R188-108L-3	29,207	40,890	4.25	6.50	17.99	7.40	9.65	13.98	1.02	M16	15.898
R188-108L-4	38,943	54,521	4.25	6.50	24.02	7.40	9.65	20.00	1.02	M16	21.653
R188-108L-5	48,679	68,151	4.25	6.50	30.00	7.40	9.65	25.98	1.02	M16	25.115
R188-108L-6				6.50		7.40			1.02	M16	
	58,415	81,781	4.25		35.98		9.65	31.97			30.716
R188-108L-7	68,151	95,411	4.25	6.50	42.01	7.40	9.65	37.99	1.02	M16	35.148

¹ Max. energy capacity per cycle for continous use.

TUBUS TR-HD

Compact powerhouse in solid material

Radial Damping, Heavy Duty Version Energy capacity 3,585 in-lbs/Cycle to 104,793 in-lbs/Cycle Maximum stroke 0.47 in to 1.73 in

Impact and collision protection: The TR-HD profile dampers are stressed in the same way as the basic model TR but offer a higher force and energy absorption with a shorter damping distance thanks to the solid design. Different damping characteristic curves can be achieved with two different co-polyester elastomer hardness levels. The slightly oval (bi-concave) shape also ensures a softer force intake.

This product family absorbs a lot of energy despite the low height: a range of 3,585 in-lbs to 104,793 in-lbs (405 Nm to 11,840 Nm) is progressively covered by strokes of 0.47" to 1.73" (12 mm to 44 mm). Delivered with two included screws, the damper can be easily and quickly installed both horizontally or vertically. The drill hole distance can be adapted if required.

These dampers are used in agricultural technology and on shovels or break joints on construction machines as well as on loading and lifting or similar equipment.

Technical Data

Energy capacity: 3,585 in-lbs/Cycle to

104,793 in-lbs/Cycle

Energy absorption: 43 % to 72 % **Dynamic force range:** 17,715 lbs to

182,748 lbs

Operating temperature range: -40 °F to

194 °F

Construction size: 1.65 in to 46.29 in

Mounting: In any position

Material hardness rating: Shore 40D, Shore

55D

Material: Profile body: Co-Polyester

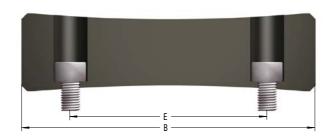
Elastomer

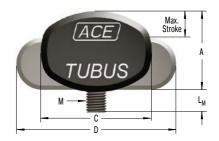
Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 16.4 ft/sec

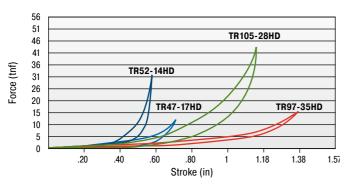
Torque max.: M10: 5.16 ft-lbs M12: 8.85 ft-lbs

Application field: Offshore industry, Agricultural machinery, Impact panels, Conveyor systems, Stacking units, Shipbuilding, Shovels or articulated joints for construction machinery, Transport roads, Loading and lifting equipment **Note:** Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


Safety information: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Radial Damping, Heavy Duty Version


TR-HD

Characteristics

TUBUS TR-HD Force-Stroke Characteristics (static)

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

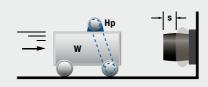
Ordering Example	TR63-24HD
TUBUS Radial	
Outer-Ø 2.48" (63 mm)	
Stroke 0.94" (24 mm)	
Heavy Duty Version	

		Emergency Stop										
	¹ E ₃	E ₃	F max. static	Stroke max.	Α	В	С	D	Е	L _M	M	Weight
TYPES	in-lbs/cycle	in-lbs/cycle	lbs	inch	inch	inch	inch	inch	inch	inch		lbs
ΓR42-14HD	3,585	5,018	14,365	0.58	1.33	5.84	1.65	2.31	4.02	0.79	M10	0.472
ΓR47-12HD	7,585	10,621	33,632	0.48	1.23	5.92	1.83	2.28	4.02	0.75	M10	0.494
ΓR47-17HD	7,523	10,532	27,449	0.67	1.27	5.90	1.84	2.75	4.02	0.94	M10	0.494
ΓR52-14HD	14,462	20,250	68,455	0.47	1.07	6.10	2.14	2.73	4.02	0.87	M10	0.494
TR57-21HD	10,568	14,798	23,560	0.86	1.87	5.86	2.23	3.12	4.02	0.71	M10	0.847
ΓR62-15HD	15,843	22,180	55,078	0.62	1.59	6.02	2.44	3.04	4.02	0.63	M10	0.825
TR62-19HD	26,021	36,430	87,653	0.66	1.50	6.25	2.94	3.71	4.02	0.63	M10	0.706
ΓR63-24HD	18,241	25,534	43,703	0.97	1.79	6.02	2.46	3.61	4.02	0.79	M10	0.831
ΓR72-26HD	15,046	21,065	28,056	1.04	2.33	5.88	2.84	3.86	4.02	0.91	M12	1.235
ΓR79-20HD	24,729	34,624	65,038	0.82	2.11	6.04	3.12	3.86	4.02	0.94	M12	1.411
ΓR79-31HD	26,331	36,863	50,942	1.17	2.21	6.09	3.10	4.42	4.02	0.91	M12	1.169
ΓR85-33HD	22,357	31,296	32,845	1.26	2.75	5.89	3.20	4.36	4.02	0.91	M12	1.566
ΓR89-21HD	39,280	54,990	107,324	0.85	1.88	6.37	3.50	4.42	4.02	0.87	M12	1.389
ΓR90-37HD	33,456	46,838	54,112	1.48	2.71	6.11	3.56	5.04	4.02	0.91	M12	1.808
ΓR93-24HD	30,278	42,386	68,005	0.96	2.50	6.10	3.66	4.54	4.02	0.91	M12	1.742
ГR97-31HD	68,487	95,880	129,311	1.00	2.23	6.45	4.11	5.07	4.02	0.83	M12	1.918
ΓR97-35HD	24,968	34,952	34,351	1.50	3.30	5.93	3.85	5.16	4.02	0.79	M12	2.337
ΓR102-44HD	41,572	58,202	57,214	1.74	3.18	6.15	4.10	5.80	4.02	0.87	M12	2.315
TR105-28HD	49,927	69,894	96,129	1.02	2.74	6.14	4.12	4.97	4.02	0.83	M12	2.205
ΓR117-30HD	74,851	104,793	143,676	1.09	2.48	6.57	4.59	5.61	4.02	0.98	M12	2.381

¹ Max. energy capacity per cycle for continous use.

Application Examples

TUBUS TA


Safe end position damping

ACE TUBUS profile dampers protect the integrated loading station on a new high speed machining center. The ACE TUBUS damper is designed to prevent overrun on the high speed loading station of a Camshaft machining centre used in the automobile industry. In the event that the drive train fails during operation or incorrect data is inputted the ACE TUBUS damper absorbs the impact preventing costly damage to the machine. The TA98-40 TUBUS damper impressed engineers with this exceptionally long service life in operation. When used as an emergency stop the TUBUS damper can absorb up to 73 % of the impact energy.

Safety with ultra high speed operation

TUBUS TS

Safe braking of maintenance boats

The maintenance of wind turbines in open seas has long resulted in damage to maintenance boats. Because of impact velocity and swell, an increase in the boat's mass of up to 20 percent must be taken into account when landing on a rigid mooring structure. It is only since the landing operation has been carried out with the aid of the ACE company's TUBUS series that cable repair and maintenance work on wind turbines has been made safe for both personnel and equipment. TUBUS of the type TS84-43 are seawater resistant and can withstand ambient temperatures from -40 °F to + 194 °F.

Seawater-resistant, robust TUBUS profile dampers made of co-polyester elastomer allow boats and crew to dock safely
Wals Diving and Marine Service, 1970AC limuiden, Netherlands

Application Examples

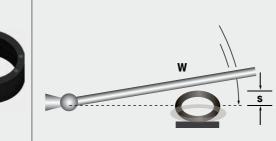
TUBUS TS

Protection of drive used in space treadmill

When training in zero gravity, a harness with bungee cords is used to ensure that trainees do not become disengaged. Three ACE profile dampers with a linear-working facility are utilized in this case. One TUBUS is positioned in the pneumatic cylinder, while the other two are put in place in the rest of the system. All the dampers have the task of protecting the system if the treadmill drive belts become damaged. Otherwise, the cylinder would reach a very high speed and become seriously damaged at the end of the stroke.

TUBUS are used to protect a fitness machine in zero gravity QinetiQ Space nv, 9150 Kruibeke, Belgium

TUBUS TR


Gentle damping for electric scooters

TUBUS bumpers make driving an e-scooter a real experience. The footboard of an electric scooter should be dampened to enable the driver to experience a comfortable ride even over potholes and other bumpy surfaces. Ideally, the characteristic line should be furnished with a soft increase in force over a long stroke. The elegant look of the scooter as well as the folding mechanism designed to save space have not allowed the use of feasible damper solutions until now. Inferior alternatives such as rubber dampers made of polyurethane or simple steel springs could not be considered from the start. The TUBUS bumper TR52-32H offered the perfect solution with its compact construction design paired with progressive damping action.

Profile dampers increase the riding comfort of an electric scooter

Special Profile Dampers

Cost-effective damping for your pressing tools

ACE provides TUBUS profile dampers in many variations. Special solutions for presses can now be cost-effectively achieved with down holder dampers, damping plugs, lift dampers and press dampers from ACE.

They replace the PU-springs previously used in the automotive industry. It was no longer possible for them to fulfil the required tasks due to the higher return stroke speeds in modern pressing tools. Made of co-polyester elastomers, the TUBUS special takes care of the protection of mounting bolts and insert bolts much more reliably. On the one hand they protect a so-called down holders during the return stroke after the forming of sheet metal parts, and on the other they function as protection for hoisting lifters.

High reliability

Long service life

High power and energy absorption

Efficient working through higher cycle rates

Extreme abrasion hardness and sheer strength

Noise reduction

Product Families

TUBUS Special Profile Dampers

A wide range of solutions for your tools

Small but effective: These versatile, custom-manufactured components make all the difference during sheet metal forming in the automotive and tool industries thanks to long service lives and high power absorption.

TUBUS Down Holder Dampers

The innovation as a substitute for overburdened PU springs

The axial-functioning elements are ideal for different diameters of mounting bolts from M10 to M30 in the press tools. They increase clock rates, service lives and reliability during increased cushioning strokes there.

TUBUS Lift Dampers

The brother of the down holder damper

Used in the end position damping in ProgDie presses, they sit on the mounting bolts of the spring-loaded belt guide rails or hoisting lifters in the bottom part of the tool of the follow-on composite tool, protect it and accelerate production.

TUBUS Damping Plugs

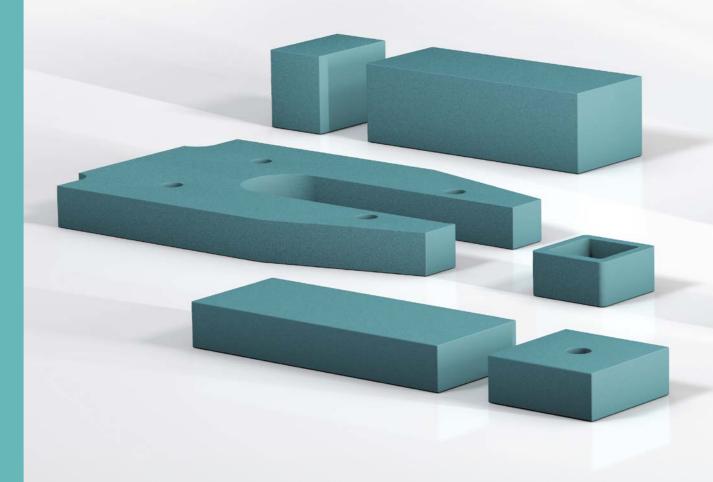
A special kind of emergency plug

These side-mounted, radial damping elements also protect the mounting bolts and insert bolts during the opening of the pressing tools. They are available in four different sizes and are used in large tools.

TUBUS Press Dampers

When a side effect (nearly) becomes the main thing

All TUBUS specials additionally reduce noise. In press dampers, used particularly in eccentric presses by manufacturers of large household appliances, this is however the main task. Screwed into a hole pocket, they also effectively protect the tools.



Damping Pads

Customized damping technology

With damping pads from the SLAB series, ACE provides solutions to effectively slow down loads impacting large and small surfaces. This means that these products are found in a wide range of damping technologies from ACE where oscillation begins or where damaging impacts in construction designs need to be slowed over a large surface.

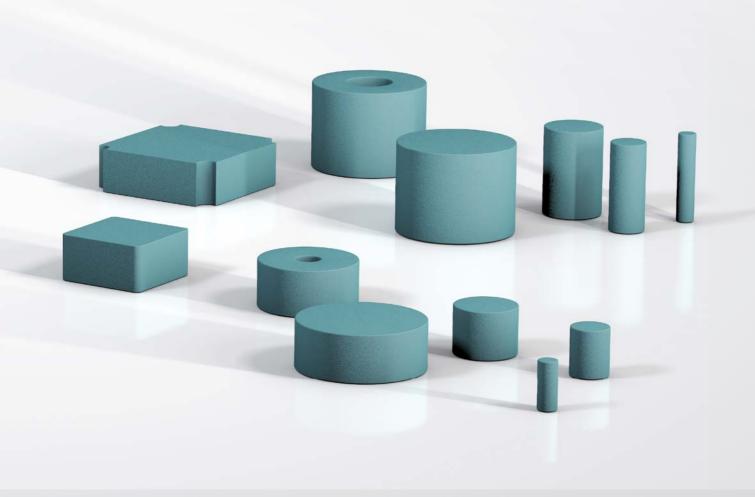
The ACE SLAB pads, available to choose in any size, absorb static loads from 0.26 to 2.65 in-lb² and can be either cut to size according to each requirement or designed as a molded part. Simply use an adhesive to install. The standard plate heights are between 0.5 and 1 inch. Many different coatings clear the way for numerous applications and not least because they can be used in a temperature range from 23 °F to 122 °F.

Individual Pad Cutting

SLAB pads pre-assembled for each project

Whether pads, cuts or drawing parts, stocked SLAB pads in combination with our freely programmable cutting machine ensure maximum flexibility with excellent delivery speed.

Fast, flexible and adapted to your conditions.


Can be integrated quickly and cost-effectively

Immense inner damping

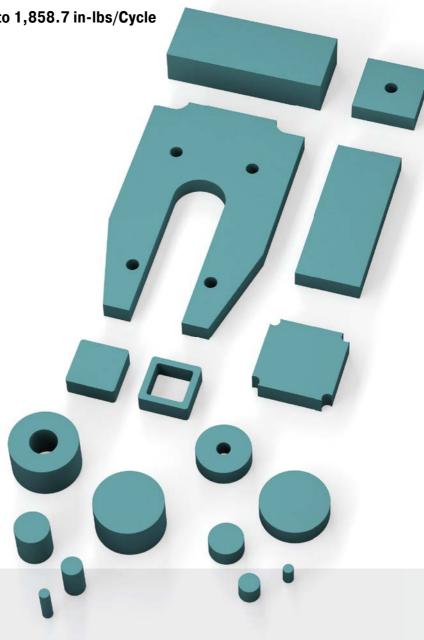
Pad thicknesses up to 3.15 inch on request

Can be assembled with CNC cutting machines

Patented formula

SLAB 030 to SLAB 300

Energy absorption in pad format


Connectable and Combinable Energy capacity 27.4 in-lbs/Cycle to 1,858.7 in-lbs/Cycle

Tailor made damping material in pad format: SLAB damping pads are made of a viscoelastic PUR-material. They absorb impact loads extremely effectively and are also suitable for insulating or damping vibration.

Stroke 0.26 inch to 0.49 inch

The pads of the product family SL-030 to SL-300 are quickly adapted to the relevant type of application. This is in part achieved through the configuration of the calculating tool or directly by the ACE specialist engineers. Furthermore, this is possible because the standard material can be cut exactly and quickly to any customer requirement with our new cutting system. It is also possible to obtain a sample to find an optimum solution.

The SLAB damping pads are proven impact or collision protection. They are used on luggage and transport belts, conveyor systems, pneumatic, electromechanical and hydraulic drives as well as on linear carriages.

Technical Data

Energy capacity: 27.4 in-lbs/Cycle to 1,858.7 in-lbs/Cycle

1,000.7 III 100/09010

Standard density:

SL-030 = approx. 12.48 lbs/ft³ SL-100 = approx. 27.47 lbs/ft³ SL-300 = approx. 42.45 lbs/ft³

Standard colour: Green

Dimensions:

Widths: up to 59 inch Lengths: up to 197 inch

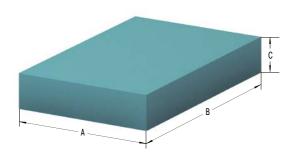
Thicknesses: 0.5 inch and 1 inch

Environment: Resistant against ozone and UV radiation. Chemical resistancy on request.

Operating temperature range: 23 °F to 122 °F

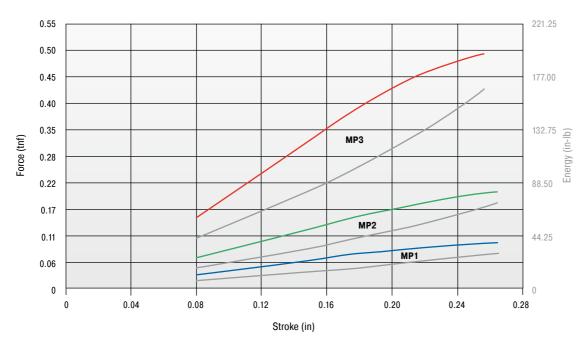
Material: Profile body: Mixed cellular PUR-Elastomer (polyurethane)

Application field: Linear slides, Handling modules, Luggage and transport belts, Impact panels, Pipeline insulation, Foundation mounting, Conveyor technology, Electronic systems and controls, Medical technology, Buildings


Note: Possibilities for cutting: Water jet cutting, stamping, splitting, sawing and drilling **Safety information:** Fire rating: B2, normally

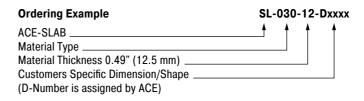
flammable, according to DIN 4102

On request: Special versions with further dimensions such as thicknesses, colours, shapes and drawing parts e.g. curves. Different wear layers.

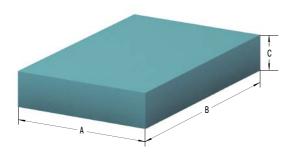


SL-030-12

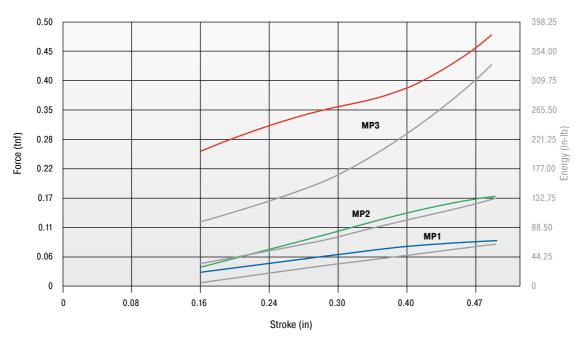
Characteristics


Type SL-030-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.26 in

Load dataDynamic load, impact velocity: approx. 3.28 ft/s

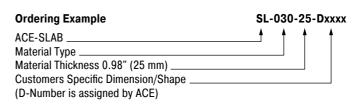

tnf = ton force

Performance ar	Performance and Dimensions													
TYPES	¹ E ₃ max. in-lbs/cycle	¹ Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs					
SL-030-12-D-MP1	27.44	0.26	1.97	1.97	0.49	3.875	12.48	4	0.014					
SL-030-12-D-MP2	70.81	0.26	2.78	2.78	0.49	7.750	12.48	4	0.028					
SL-030-12-D-MP3	168.16	0.26	3.94	3.94	0.49	15.500	12.48	4	0.055					


¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.

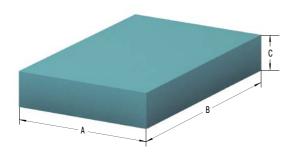
SL-030-25

Characteristics


Type SL-030-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.49 in

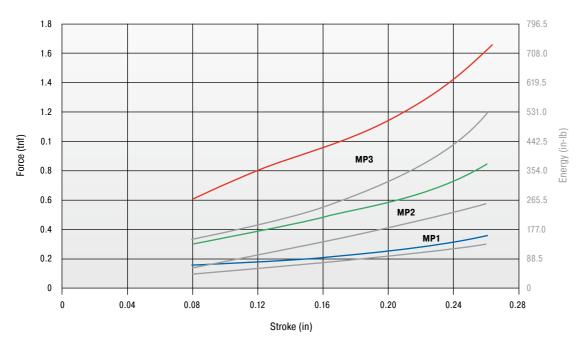
Load dataDynamic load, impact velocity: approx. 3.28 ft/s

tnf = ton force

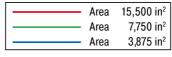


Performance and Dimensions									
TYPES	¹ E ₃ max. in-lbs/cycle	1 Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs
SL-030-25-D-MP1	59.30	0.49	1.97	1.97	0.98	3.875	12.48	5	0.028
SL-030-25-D-MP2	132.76	0.49	2.78	2.78	0.98	7.750	12.48	5	0.055
SL-030-25-D-MP3	371.73	0.49	3.94	3.94	0.98	15.500	12.48	5	0.110

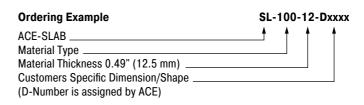
¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.



SL-100-12

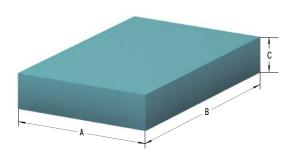


Characteristics


Type SL-100-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.26 in

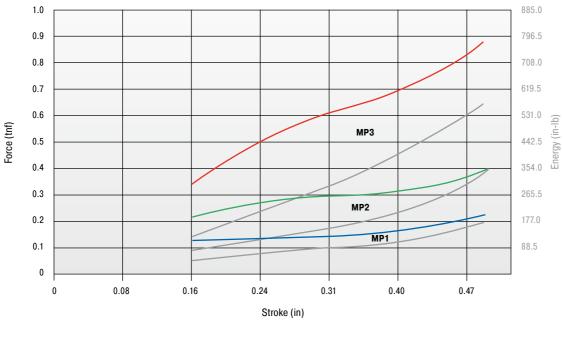
Load dataDynamic load, impact velocity: approx. 3.28 ft/s

tnf = ton force



Performance and Dimensions									
TYPES	¹ E ₃ max. in-lbs/cycle	¹ Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs
SL-100-12-D-MP1	132.76	0.26	1.97	1.97	0.49	3.875	27.47	4	0.030
SL-100-12-D-MP2	265.52	0.26	2.78	2.78	0.49	7.750	27.47	4	0.061
SL-100-12-D-MP3	531.04	0.26	3.94	3.94	0.49	15.500	27.47	4	0.121

¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.



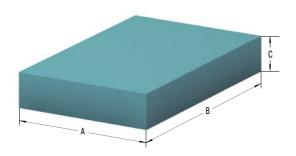
SL-100-25

Characteristics

Type SL-100-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.49 in

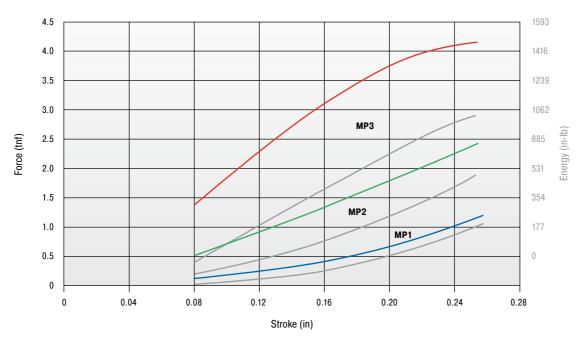
Load dataDynamic load, impact velocity: approx. 3.28 ft/s

tnf = ton force


Ordering Example	SL-100-2	5-Dxxxx
ACE-SLAB		† †
Material Type		
Material Thickness 0.98" (25 mm)		
Customers Specific Dimension/Shape		
(D-Number is assigned by ACE)		

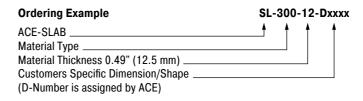
Performance and Dimensions									
TYPES	¹ E ₃ max. in-lbs/cycle	1 Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs
SL-100-25-D-MP1	177.01	0.49	1.97	1.97	0.98	3.875	27.47	5	0.061
SL-100-25-D-MP2	354.03	0.49	2.78	2.78	0.98	7.750	27.47	5	0.121
SL-100-25-D-MP3	557.60	0.49	3.94	3.94	0.98	15.500	27.47	5	0.243

¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.



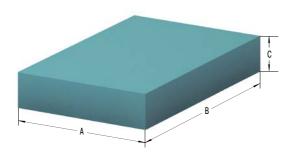
SL-300-12

Characteristics


Type SL-300-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.26 in

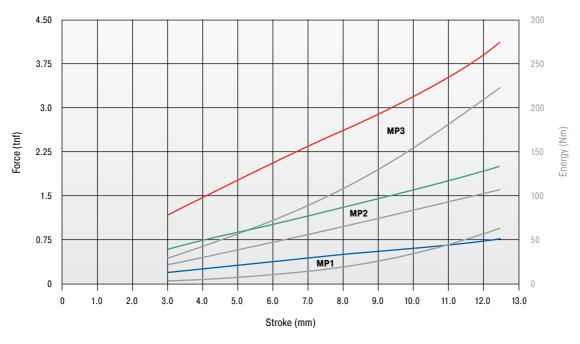
Load dataDynamic load, impact velocity: approx. 3.28 ft/s

tnf = ton force



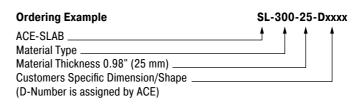
Performance and Dimensions									
TYPES	¹ E ₃ max. in-lbs/cycle	1 Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs
SL-300-12-D-MP1	336.33	0.26	1.97	1.97	0.49	3.875	42.45	3	0.046
SL-300-12-D-MP2	575.30	0.26	2.78	2.78	0.49	7.750	42.45	3	0.094
SL-300-12-D-MP3	1,070.94	0.26	3.94	3.94	0.49	15.500	42.45	3	0.187

¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.



SL-300-25

Characteristics


Type SL-300-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 0.49 in

Load dataDynamic load, impact velocity: approx. 3.28 ft/s

tnf = ton force

Performance and Dimensions									
TYPES	¹ E ₃ max. in-lbs/cycle	1 Stroke inch	A inch	B inch	C inch	Area inch²	Standard density lbs/ft ³	Return Time s	Weight Ibs
SL-300-25-D-MP1	522.19	0.49	1.97	1.97	0.98	3.875	42.45	4	0.094
SL-300-25-D-MP2	893.92	0.49	2.78	2.78	0.98	7.750	42.45	4	0.187
SL-300-25-D-MP3	1,858.66	0.49	3.94	3.94	0.98	15.500	42.45	4	0.375

¹ Maximum energy absorption in terms of area graded pad sizes as a reference for the correct selection of material and pad size. The energy absorption depends on the individual impact surface and stroke utilization.

Bonding of Polyurethane (PUR) Elastomers

Cellular and compact parts of polyurethane (PUR) elastomers SLAB damping pads can be bonded according to the following recommendations. If treatment instructions are followed, the strengths of the bonded joint can be equivalent to the elastomer material itself.

1. General Information

To achieve the required bonding strength it is necessary to ensure the correct adhesive is chosen for each individual application.

Contact bonding material

Thin adhesive film, with little filling of the gaps. Correcting or moving of the areas covered with bonding material is no longer possible after the first contact is made (contact effect).

Once a bonding is separated, the bonding process must be renewed. Please note that creases, ripples or blisters cannot be straightened once the contact is made.

Hardening bonding material

(As thin as possible) the film of glue fills the joint. The gluing can be done after the edges are brought together.

2. Preparation

The preparation of bonding surfaces is of significant importance for the bonding strength. The surfaces must be adapted to each other and available in plain, clean form.

Careful removal of

Adhesive remnants, oil, fat, separating agents, dirt, dust, scales, molding layers, protective coating, finish, paint, sweat etc.

Mechanical support

Stripping, brushing, scraping, grinding, sandblasting.

Chemical support

Degreasing (washing off with grease remover), etching, priming; pay attention to chemical resistancy on the following page!

In general, SLAB damping pads in sheet form can be bonded without pretreatment. Molded parts, with or without special skin, have to be cleaned from left-over separating agents, if necessary by grinding. When bonding with other materials like plastic, wood, metal or concrete, mechanical and/or chemical additives have to be used.

The adhesive has to be prepared according to the formula, observing the manufacturer's recommendations. The adhesive film is also to be carefully applied pursuant to these details. (Tools: brush, spatula, adhesive spreader, airless spray gun).

Contact bonding material

Apply the non-gap-filling adhesive film to both bonding surfaces — the thinner, the better. To close the pores of low density materials, two layers may be necessary.

Hardening bonding material

Apply evenly. Possible irregularities can be compensated by the film thickness.

3. Bonding

When using contact bonding material, the flash off time has to be kept in mind. Especially, with systems containing water instead of usual solvents, the adhesive film must be as dry as possible in order to pass the 'finger test' – no marks appear when touching the adhesive surface. When using hardening bonding material, the parts have to be joined immediately after applying the bonding material.

4. Pressing

Contact bonding material Contact pressure up to 2.85 in/lb² Fix firmly

It is important to carefully follow the manufacturer's instructions with regard to processing temperature, hardening time and earliest possible loading.

5. Selection of Approved Bonding Materials

Because of the variety of materials that can be bonded together as well as numerous suitable bonding materials, we refer you to a worldwide leading producer of bonding and sealing materials.

Sika U.S. Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 T +1 (800) 933-SIKA (7452) www.usa.sika.com

Chemical Resistance

Test (following DIN 53428)

Exposure time of the medium: 6 weeks at room temperature, but for concentrated acids and bases as well as solvents: 7 days at room temperature

Evaluation Criteria

Changing of tensile strength and elongation of break (dry samples), change in volume

Evaluation Standard

1 Excellent resistance change in characteristics < 10 %

2 Good resistance change in characteristics between 10 % and 20 %
 3 Conditional resistance change in characteristics partly above 20 %
 4 Not resistant characteristics all above 20 %

All information is based on our current knowledge and experiences. We reserve the rights for changes towards product refinement.

Chemical Resistance

Water/Watery Solutions	SL-030 to SL-300
Water	1
Iron (III) chloride 10 %	1
Sodium carbonate	1
Sodium chlorate 10 %	1
Sodium chloride 10 %	1
Sodium nitrate 10 %	1
Tensides (div.)	1
Hydrogen peroxide 3 %	1
Laitance	1

Oils and Greases	
ASTM Oil No. 1	1
ASTM Oil No. 3	1
Laitance	2
Hydraulic oils	depends on consistency/additives
Motor oil	1
Formwork oil	1
High performance grease	1-2
Railroad switch lubricant	1-2

Acids and Bases

Formic acid 5 %	6	3
Acetic acid 5 %		2
Phosphoric acid	d 5 %	1
Nitic acid 5 %		4
Hydrochloric ac	id 5 %	1
Sulphuric acid	5 %	1
Ammonia soluti	on 5 %	1
Caustic potash	solution 5 %	1
Caustic soda se	olution 5 %	1

Solvents	SL-030 to SL-300
Acetone	4
Diesel/Fuel oil	2
Carburetor fuel/Benzine	3
Glycerin	1
Glycols	1-2
Cleaning solvents/Hexane	1
Methanol	3
Aromatic hydrocarbons	4

Other Factors

Hydrolysis *	1
Ozone	1
UV radiation and weathering	1-2
Biological resistance	1

^{* 28} days, 158 °F, 95 % relative humidity

Samples

Sample Pads and Kits

Sample Kits

Part Number	Description	Dimensions
250-0800	SL-030-12 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0801	SL-030-25 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0802	SL-100-12 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0803	SL-100-25 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0804	SL-300-12 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0805	SL-300-25 Sample Kit	1.97 x 1.97 in / 2.78 x 2.78 in / 3.94 x 3.94 in x 0.49 in
250-0806	SL-170-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in
250-0807	SL-210-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in
250-0808	SL-275-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in
250-0809	SL-450-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in
250-0810	SL-600-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in
250-0811	SL-720-12/25 Sample Kit	8.66 in x 5.91 in x 0.49 in & 0.98 in

Additional Information

50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm kits include 1 sample each of the MP1, MP2 and MP3. 220 mm x 150 mm x 12.5 mm & 25 mm kits include 1 sample each of the 12 and 25 MP4.

Shock Absorption Samples (Sold Separately)

Part Number	Description	Dimensions
SL-030-12-D-MP1	SL-030-12-D-MP1	1.97 in x 1.97 in
SL-030-12-D-MP2	SL-030-12-D-MP2	2.78 in x 2.78 in
SL-030-12-D-MP3	SL-030-12-D-MP3	3.94 in x 3.94 in
SL-030-12-D-MP4	SL-030-12-D-MP4	8.66 in x 5.91 in
	SL-030-12-D-MP4-V+K*	8.66 in x 5.91 in
SL-030-12-D-MP5	SL-030-12-D-MP5	59.06 in x 31.50 in
SL-030-25-D-MP1	SL-030-25-D-MP1	1.97 in x 1.97 in
SL-030-25-D-MP2	SL-030-25-D-MP2	2.78 in x 2.78 in
SL-030-25-D-MP3	SL-030-25-D-MP3	3.94 in x 3.94 in
SL-030-25-D-MP4	SL-030-25-D-MP4	8.66 in x 5.91 in
SL-030-25-D-MP5	SL-030-25-D-MP5	59.06 in x 31.50 in
SL-100-12-D-MP1	SL-100-12-D-MP1	1.97 in x 1.97 in
SL-100-12-D-MP2	SL-100-12-D-MP2	2.78 in x 2.78 in
SL-100-12-D-MP3	SL-100-12-D-MP3	3.94 in x 3.94 in
SL-100-12-D-MP4	SL-100-12-D-MP4	8.66 in x 5.91 in
	SL-100-12-D-MP4-V+K*	7.87 in x 5.91 in
SL-100-12-D-MP5	SL-100-12-D-MP5	59.06 in x 31.50 in
SL-100-25-D-MP1	SL-100-25-D-MP1	1.97 in x 1.97 in
SL-100-25-D-MP2	SL-100-25-D-MP2	2.78 in x 2.78 in
SL-100-25-D-MP3	SL-100-25-D-MP3	3.94 in x 3.94 in
SL-100-25-D-MP4	SL-100-25-D-MP4	8.66 in x 5.91 in
SL-100-25-D-MP5	SL-100-25-D-MP5	59.06 in x 31.50 in
SL-300-12-D-MP1	SL-300-12-D-MP1	1.97 in x 1.97 in
SL-300-12-D-MP2	SL-300-12-D-MP2	2.78 in x 2.78 in
SL-300-12-D-MP3	SL-300-12-D-MP3	3.94 in x 3.94 in
SL-300-12-D-MP4	SL-300-12-D-MP4	8.66 in x 5.91 in
	SL-300-12-D-MP4-V+K*	7.87 in x 5.91 in
SL-300-12-D-MP5	SL-300-12-D-MP5	59.06 in x 31.50 in
SL-300-25-D-MP1	SL-300-25-D-MP1	1.97 in x 1.97 in
SL-300-25-D-MP2	SL-300-25-D-MP2	2.78 in x 2.78 in
SL-300-25-D-MP3	SL-300-25-D-MP3	3.94 in x 3.94 in
SL-300-25-D-MP4	SL-300-25-D-MP4	8.66 in x 5.91 in
SL-300-25-D-MP5	SL-300-25-D-MP5	59.06 in x 31.50 in

* Has a layer for wear protection & adhesive on one side

Vibration Isolation Samples (Sold Separately)

Part Number	Description	Dimensions
SL-170-12-F-MP4	SL-170-12-F-MP4	8.66 in x 5.91 in
SL-170-25-F-MP4	SL-170-25-F-MP4	8.66 in x 5.91 in
SL-210-12-F-MP4	SL-210-12-F-MP4	8.66 in x 5.91 in
SL-210-25-F-MP4	SL-210-25-F-MP4	8.66 in x 5.91 in
SL-275-12-F-MP4	SL-275-12-F-MP4	8.66 in x 5.91 in
SL-275-25-F-MP4	SL-275-25-F-MP4	8.66 in x 5.91 in
SL-450-12-F-MP4	SL-450-12-F-MP4	8.66 in x 5.91 in
SL-450-25-F-MP4	SL-450-25-F-MP4	8.66 in x 5.91 in
SL-600-12-F-MP4	SL-600-12-F-MP4	8.66 in x 5.91 in
SL-600-25-F-MP4	SL-600-25-F-MP4	8.66 in x 5.91 in
SL-720-12-F-MP4	SL-720-12-F-MP4	8.66 in x 5.91 in
SL-720-25-F-MP4	SL-720-25-F-MP4	8.66 in x 5.91 in

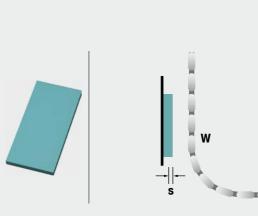
Application Examples

SL-030, TA

Damping combination SLAB and TUBUS

SLAB-TUBUS-Combination ensures fast luggage transport. Airports strive to shorten air passengers' waiting times as much as possible. This goal is met with a solution specially developed for luggage transport systems and has solved previous damping issues. Transport carriers with a weight of up to 265 lbs can now be moved at the desired conveyor belt speeds. A SLAB-combination of the material SL-030-12(25) together with two TA40-16 type TUBUS profile dampers are used here.

Fast luggage transport for airport customers



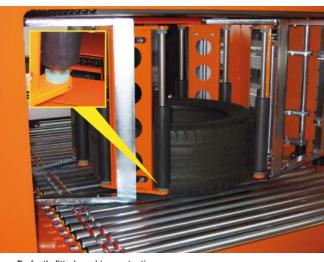
SL-030

Noise reduction

ACE-SLAB damping pads protect man and machine. At the beginning of the construction phase of a modern processing center at the end position, a 55 lb cable channel collided with force against the housing and produced a deafening noise and mechanical strain on the energy chain. A reliable solution for compliance with the operational parameters was realized with the SL-030-25 ACE-SLAB damping pads even before the milling machine was finished.

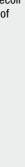
Low-noise energy chain

Application Examples


SL-030

Impact reduction in ring form

ACE-SLAB damping pads make tire transport safer. Developed for absorbing the impact of forces, the ACE-SLAB damping pads SL-030-121 applied in this tire testing system are ideal for protecting the sliding parts of the machine during quality tests. The individual customization of the ring form of the center arm and simple integration into the equipment also support the decision for applying these innovative absorber elements.



Perfectly fitted machine protection SDS Systemtechnik GmbH, 75365 Calw, Germany

SL-030

Impact protection for large areas

ACE-SLAB damping pads offer impact protection for wooden battens. To protect wooden battens with differing weights and impact speeds of approx. 6.5 in/s, the SLAB-material SL-030-12 was screwed across the whole surface between two steel sheets in this application. This creates an even damping effect over the whole impact area, which protects the impact surfaces of the battens from an excessive impact load. The minimisation of recoil as well as reduction of noise are further positive side effects of this construction.

Impact protection for wooden battens

Motion Control

Gas Springs – Push Type, Gas Springs – Pull Type Hydraulic Dampers, Hydraulic Feed Controls Rotary Dampers

Custom Control of Hand Forces Customized to suit your applications

The ACE products in this segment enhance the quality of any type of movement. Anyone who wants to raise or lower loads, regulate the feed of an object to the precise millimeter or gently decelerate rotating or linear movements will find the right solution here.

ACE delivers industry leading quality. Our innovative solutions correspond with stringent requirements for ergonomics and individuality, including custom pressurized gas springs.

Industrial Gas Springs – Push Type

The smart way to lift and lower

Anyone who wants to lift or lower loads with control and without excessive strength relies on the industrial gas springs from ACE. These maintenance-free, ready-to-install machine elements, which are available from stock, support sheer muscle power, reliably open and hold.

Available with body diameters of 0.31" to 2.76" (8 to 70 mm) and forces from 2 to 2,925 lbs. (10 to 13,000 N), ACE push type gas springs offer a huge variety and maximum service life. The first is achieved thanks to the number of available connections and fittings for simple attachment and the latter with high quality design and materials. Whether they are made of steel or stainless steel, these components make any work easier and are also visually appealing.

Ready-to-install and universally applicable

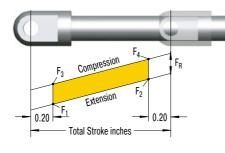
Modular end fittings and mounting brackets

Calculation program for individual design

Standard with fill/DE-Gas valve

Large variety in stock

Function of a Gas Spring - Push Type


ACE gas springs are individually filled to a predetermined pressure to suit a customer's requirement (extension Force F_1). The cross-sectional area of the piston rod and filling pressure determines the extension force.

During the compression of the piston rod, nitrogen flows through an orifice in the piston from the full bore side of the piston to the annulus. The nitrogen is compressed by the volume of the piston rod. As the piston rod is compressed the pressure increases, so increasing the reaction force (progression). The force depends on the proportional relationship between the piston rod and the inner tube diameter, which is approximately linear.

Calculation Principles

Force-Stroke Characteristics of Gas Spring (Push Type)

Free calculation service see page 188!

F₁ = nominal force at 68 °F

(this is the pressure figure normally used when specifying the gas spring)

F₂ = force in the complete compressed position

When compressing the piston rod, there is an additional friction force caused by the contact pressure of the seals (this **only** occurs **during the compression stroke**):

F₃ = force at the beginning of the compression stroke

 F_{A}^{3} = force at the end of the compression stroke

Gas Springs (Push Type)		
TYPES	Progression approx. %	¹ Friction F _R approx. in lbs
GS-8	29 - 33 ²	2.25
GS-10	13 - 16 ²	2.25
GS-12	20 - 35 ²	4.50
GS-15	30 - 40 ²	4.50
GS-19	24 - 35 ²	6.74
GS-22	30 - 40 ²	6.74
GS-28	63 - 76 ²	8.99
GS-40	38 - 50 ²	11.24

¹ Depending on the filling force

Progression: (the slope of the force line in the diagram above) is due to the reduction of the internal gas volume as the piston rod moves from its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request.

Effect of termperature: The nominal F_1 figure is given at 68 °F. An increase of 50 °F will increase force by 3.4 %.

Filling tolerances: -4.50 lbs to +8.99 lbs or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Industrial Gas Springs – Push Type

GS-8 to GS-70

Page 150

Valve Technology

Individual stroke length and extension forces

Hoods, Shutters, Machine housing, Conveyor systems

GS-8-V4A to GS-40-VA

Page 160

Valve Technology, Stainless Steel

With food grade oil for FDA compliance

Hoods, Shutters, Machine housing, Conveyor systems

GST-40 Tandem

Page 170

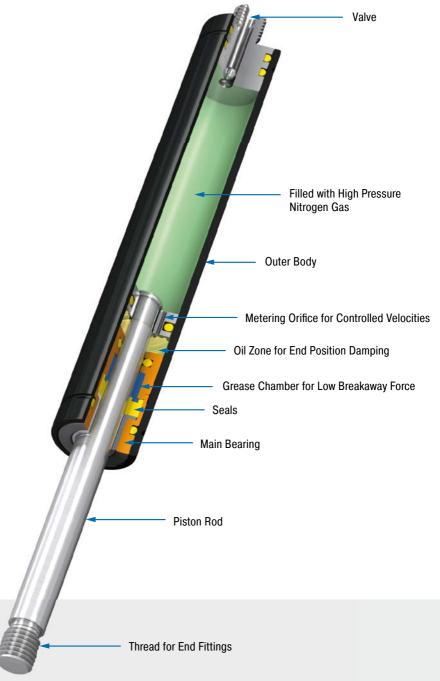
Valve Technology

Optimized dual force for heavy flaps and wide angle applications

Hoods, Shutters, Machine housing, Conveyor systems

² Depending on the stroke

GS-8 to GS-70


Individual stroke length and extension forces

Valve Technology Extension force 2 lbs to 2,923 lbs Stroke 0.79 in to 39.37 in

Universal and tailor made: ACE industrial gas springs offer perfect support of muscle power with forces from 2 to 2,923 lbs. (10 to 13,000 N) with body diameter of 0.31" to 2.76" (8 to 70 mm). These durable and sealed systems are ready for installation, maintenance-free and filled with pressurized nitrogen gas.

They are filled according to individual customer pressure requirements and may be adjusted later by use of a built-in valve. ACE provides free calculation support and designs the gas springs with mounting points specifically for the particular application. A variety of accessories makes assembly even easier and allows universal application of the gas springs.

ACE industrial gas push type springs are used on covers, lids, or other components. They are used in industrial applications, automation and machine building, medical technology as well as in the electronics, automobile and furniture industries.

Technical Data

Extension force: 2 lbs to 2,923 lbs Piston rod diameter: Ø 0.12 in to Ø 1.18 in

Progression: Approx. 13 % to 76 % (depending on size and stroke) Lifetime: Approx. 250,000 cycles Operating temperature range: -4 °F to 176 °F

Material: Outer body: Coated steel; Piston rod: Steel or stainless steel with wear-resistant coating; End fittings: Zinc plated steel

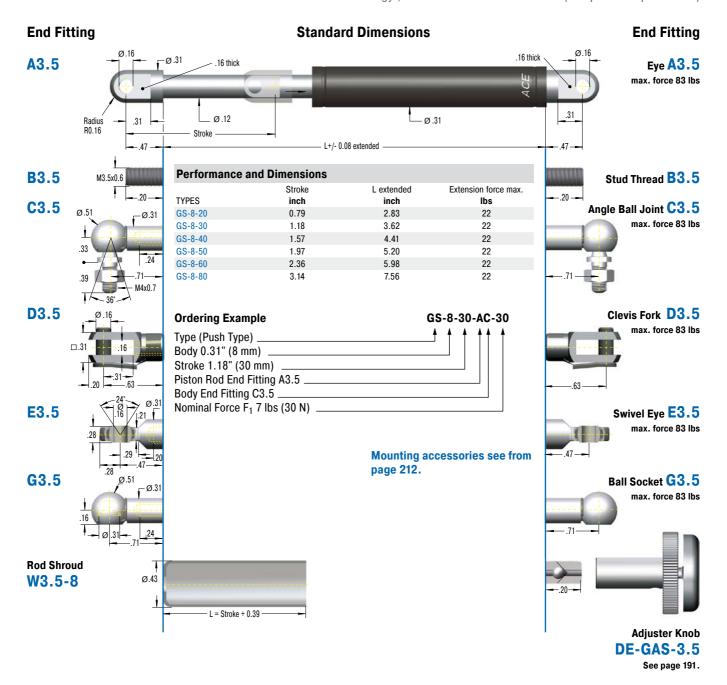
Operating fluid: Nitrogen gas and oil Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: Approx. 20 % to 67 % (depending on size and stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Jacking applications, Assembly stations, Vehicle technology, Folding elements

Note: Increased break-away force if unit has not moved for some time.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Safety information: Gas springs (push type) should not be installed under pre-tension.

On request: Special oils and other special options. Alternative accessories. Different end position damping and extension speed.

Valve Technology, Extension force 2 lbs to 22 lbs (compressed up to 30 lbs)

GS-8 A3.5 D3.5 D3.5 NA3.5 NG3.5 OG3.5

Technical Data

Extension force: 2 lbs to 22 lbs (compressed up to 30 lbs)

Progression: Approx. 29 % to 33 %

Operating temperature range: -4 °F to 176 °F

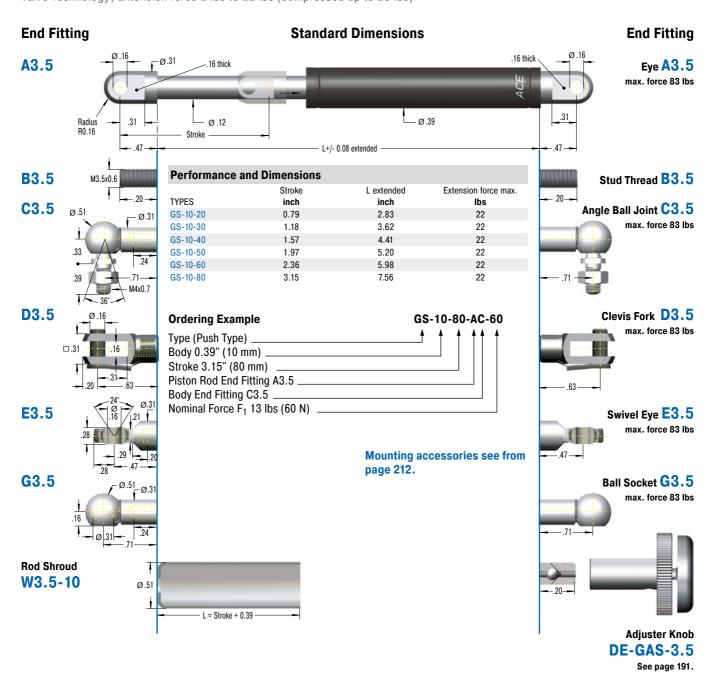
Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

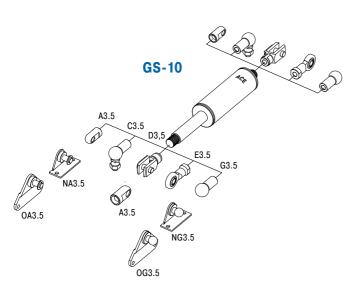
 $\textbf{Mounting:} \ \textbf{We recommend mounting with piston rod downwards to take}$

 $advantage \ of \ the \ built-in \ end \ position \ damping.$

End position damping length: approx. 0.2"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 2 lbs to 22 lbs (compressed up to 26 lbs)

Technical Data

Extension force: 2 lbs to 22 lbs (compressed up to 26 lbs)

Progression: Approx. 13 % to 16 %

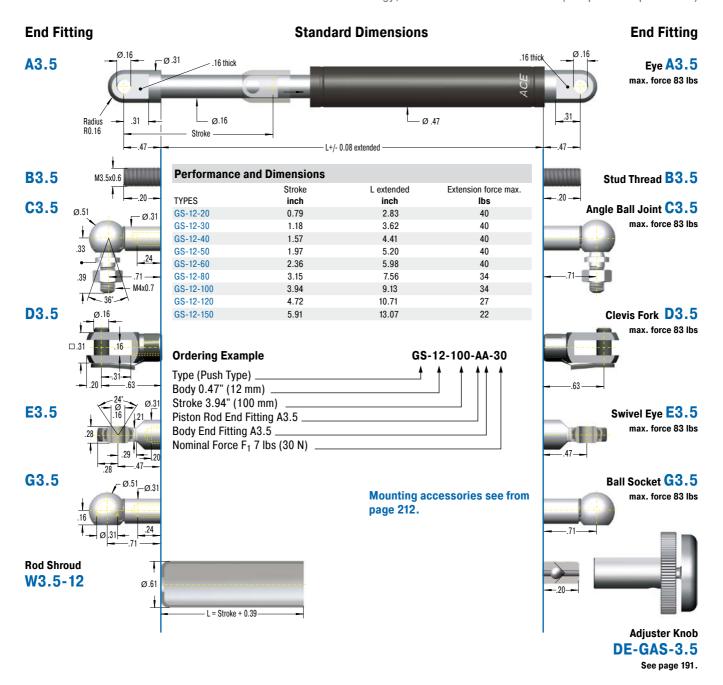
Operating temperature range: -4 °F to 176 °F

Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

 $\textbf{Mounting:} \ \textbf{We recommend mounting with piston rod downwards to take}$

advantage of the built-in end position damping.

End position damping length: approx. 0.2"


(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 3 lbs to 40 lbs (compressed up to 55 lbs)

GS-12 A3.5 D3.5 D3.5 NG3.5 NG3.5 OG3.5

Technical Data

Extension force: 3 lbs to 40 lbs (compressed up to 55 lbs)

Progression: Approx. 20 % to 35 %

Operating temperature range: -4 °F to 176 °F

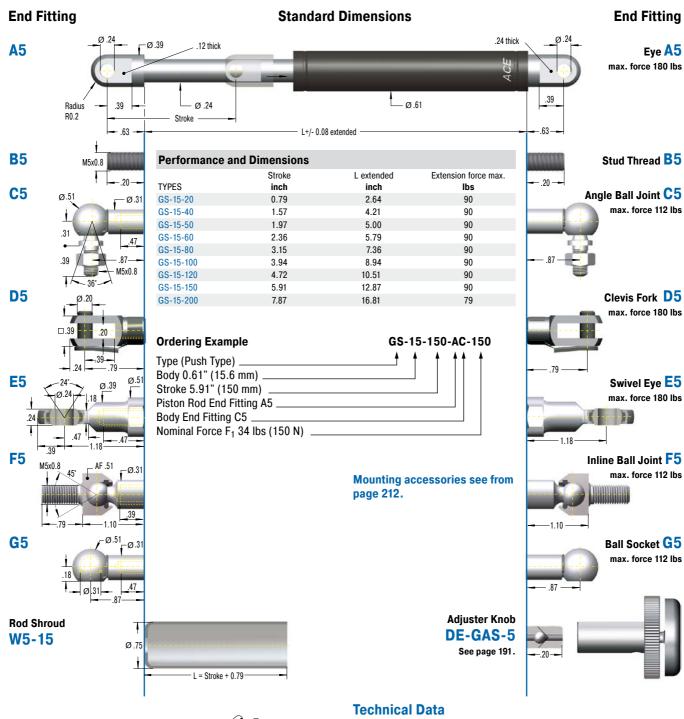
Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

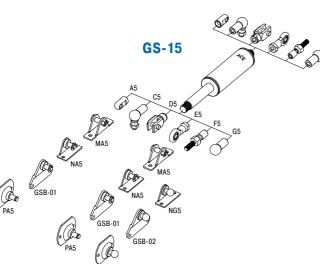
 $\textbf{Mounting:} \ \textbf{We recommend mounting with piston rod downwards to take}$

 $advantage \ of \ the \ built-in \ end \ position \ damping.$

End position damping length: approx. 0.39"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 9 lbs to 90 lbs (compressed up to 126 lbs)

Extension force: 9 lbs to 90 lbs (compressed up to 126 lbs)

Progression: Approx. 30 % to 40 %

Operating temperature range: -4 °F to 176 °F

Material: Outer body: Steel coated with UV paint; Piston rod: Steel

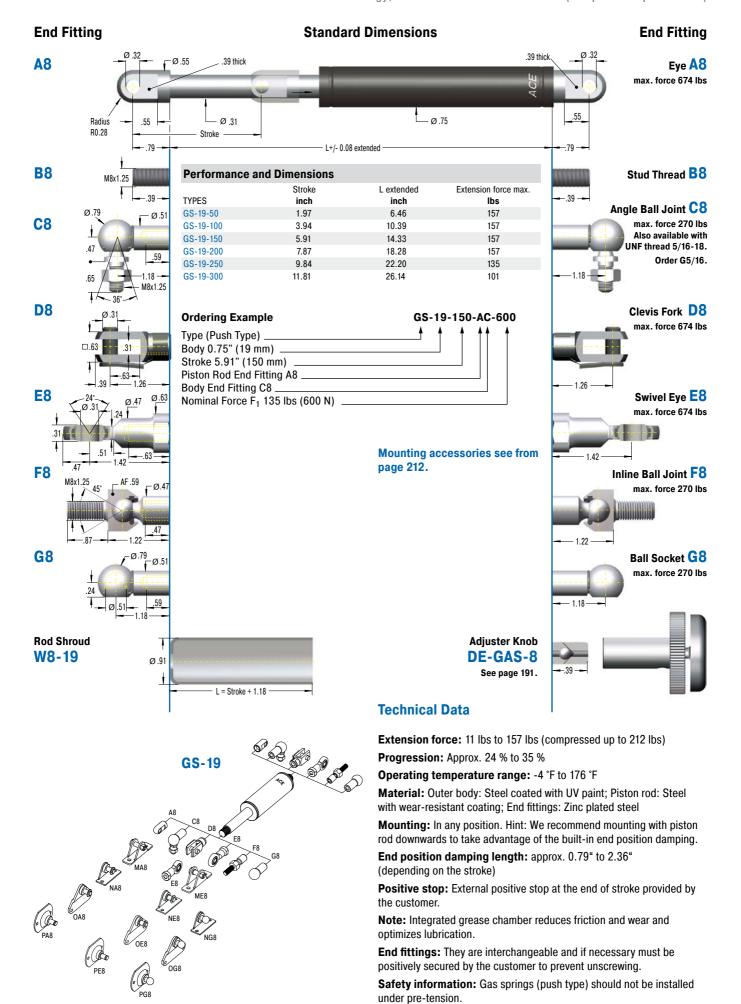
with wear-resistant coating; End fittings: Zinc plated steel

Mounting: We recommend mounting with piston rod downwards to take

advantage of the built-in end position damping.

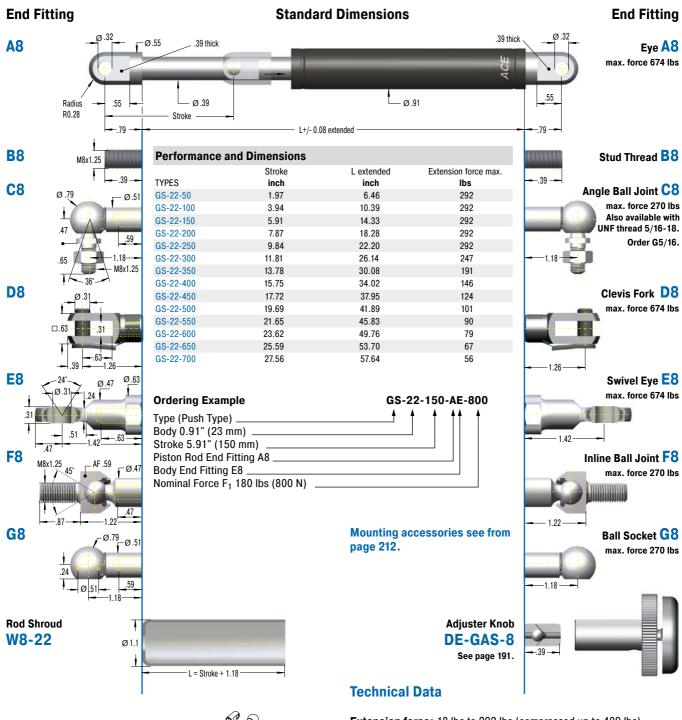
End position damping length: approx. 0.39"

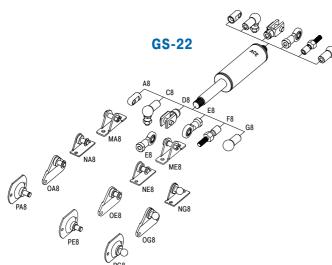
(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.




Valve Technology, Extension force 11 lbs to 157 lbs (compressed up to 212 lbs)

Valve Technology, Extension force 18 lbs to 292 lbs (compressed up to 409 lbs)

Extension force: 18 lbs to 292 lbs (compressed up to 409 lbs)

Progression: Approx. 30 % to 40 %

Operating temperature range: -4 °F to 176 °F

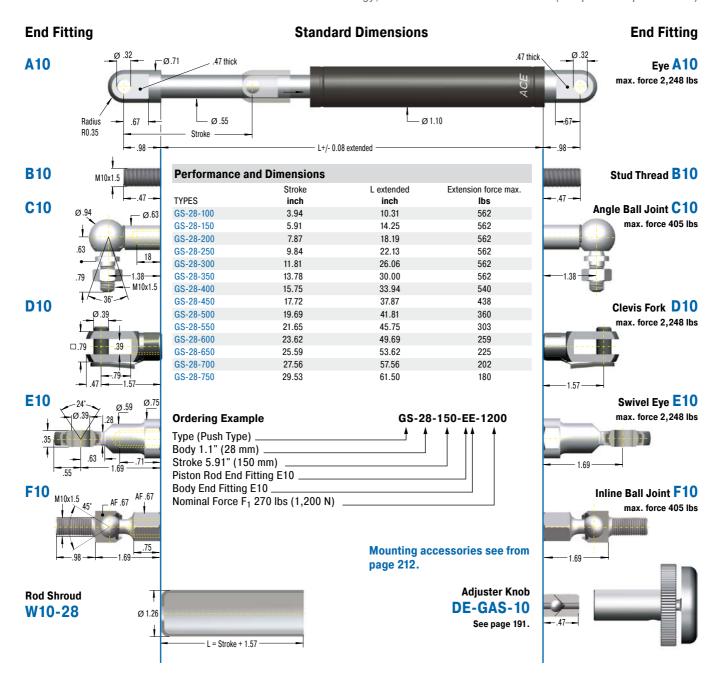
Material: Outer body: Steel coated with UV paint; Piston rod: Steel

with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position. Hint: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 0.79" to 2.76"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Integrated grease chamber reduces friction and wear and optimizes lubrication.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 34 lbs to 562 lbs (compressed up to 989 lbs)

GS-28 A10 C10 D10 E10 F10 ME10 OE10

Technical Data

Extension force: 34 lbs to 562 lbs (compressed up to 989 lbs)

Progression: Approx. 63 % to 76 %

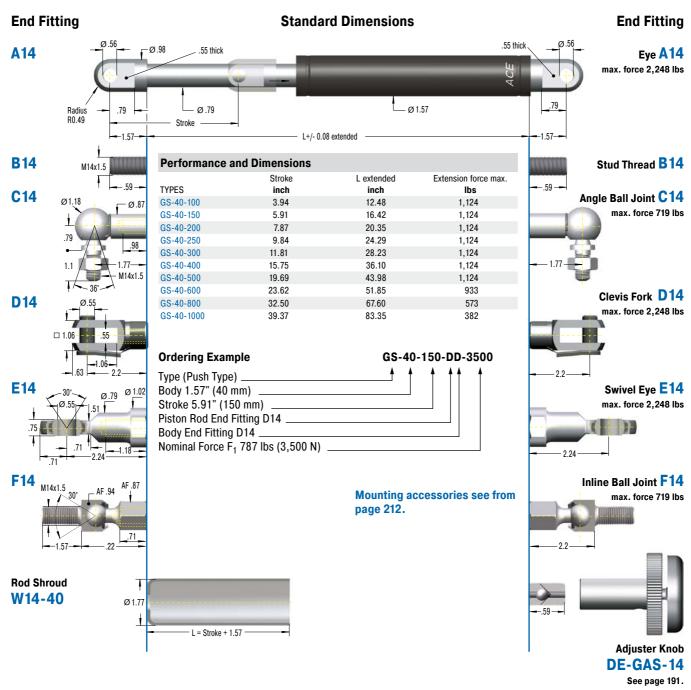
Operating temperature range: -4 °F to 176 °F

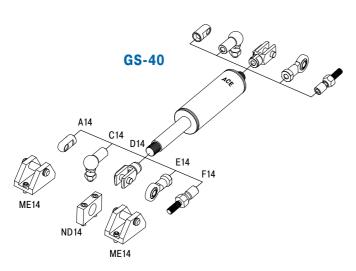
Material: Outer body: Steel coated with UV paint; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position. Hint: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 1.18" to 2.76"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Integrated grease chamber reduces friction and wear and optimizes lubrication.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 112 lbs to 1,124 lbs (compressed up to 1,686 lbs)

Technical Data

Extension force: 112 lbs to 1,124 lbs (compressed up to 1,686 lbs)

Progression: Approx. 38 % to 50 %

Operating temperature range: -4 °F to 176 °F

Material: Outer body: Steel coated with UV paint; Piston rod: Steel

with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position. Hint: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 1.18" to 2.76"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Integrated grease chamber reduces friction and wear and optimizes lubrication.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 450 lbs to 2,923 lbs (compressed up to 3,653 lbs)

End Fitting Standard Dimensions End Fitting B24 Stud Thread **B24** Ø 1.18 Ø 2.76 Stroke 1.38 1.38 L+/- 0.08 extended **Performance and Dimensions** L extended Extension force max. Stroke TYPES inch inch lbs GS-70-100 3.94 12.60 2,923 **D24** GS-70-200 7.87 20.47 2,923 Clevis Fork D24 GS-70-300 2,923 11.81 28.35 max. force 11,240 lbs GS-70-400 15.75 36.22 2,923 2,923 GS-70-500 19.69 44.09 GS-70-600 51.97 2.923 23.62 GS-70-700 27.56 59.84 2,923 GS-70-800 67.72 2,597 31.50 **Ordering Example** GS-70-200-EE-8000 Type (Push Type) Body 2.76" (70 mm) Stroke 7.87" (200 mm) **E24** Swivel Eye E24 Piston Rod End Fitting E24 max. force 11,240 lbs Body End Fitting E24 Nominal Force F₁ 1,798 lbs (8,000 N) Mounting accessories see from page 212. **Rod Shroud** 7 W24-70 Ø 3 15 L = Stroke + 5.12

GS-70 D24 E24 ND24 ME24

Technical Data

Extension force: 450 lbs to 2,923 lbs (compressed up to 3,653 lbs)

Progression: Approx. 25 %

Operating temperature range: -4 °F to 176 °F

Material: Outer body: Coated steel; Piston rod: Hard chrome plated

steel; End fittings: Zinc plated steel

Mounting: In any position. Hint: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

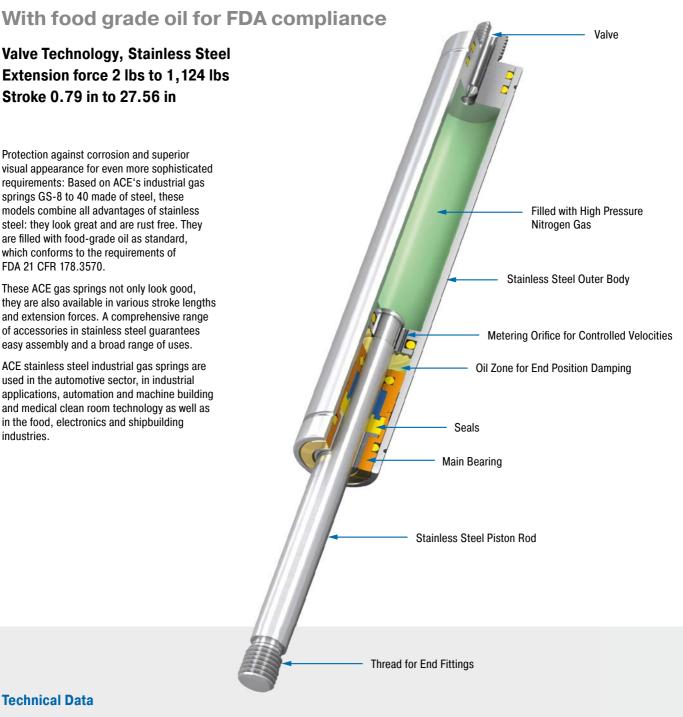
End position damping length: approx. 0.39" to 0.79"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.


GS-8-V4A to GS-40-VA

Valve Technology, Stainless Steel Extension force 2 lbs to 1,124 lbs Stroke 0.79 in to 27.56 in

Protection against corrosion and superior visual appearance for even more sophisticated requirements: Based on ACE's industrial gas springs GS-8 to 40 made of steel, these models combine all advantages of stainless steel: they look great and are rust free. They are filled with food-grade oil as standard, which conforms to the requirements of FDA 21 CFR 178.3570.

These ACE gas springs not only look good, they are also available in various stroke lengths and extension forces. A comprehensive range of accessories in stainless steel guarantees easy assembly and a broad range of uses.

ACE stainless steel industrial gas springs are used in the automotive sector, in industrial applications, automation and machine building and medical clean room technology as well as in the food, electronics and shipbuilding industries.

Technical Data

Extension force: 2 lbs to 1,124 lbs Piston rod diameter: Ø 0.12 in to Ø 1.18 in

Progression: Approx. 13 % to 59 % (depending on size and stroke) Lifetime: Approx. 250,000 cycles Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel (1.4301/1.4305, AISI 304/303 and 1.4404/1.4571, AISI 316L/316Ti)

Operating fluid: Nitrogen gas and HLP oil according to DIN 51524, part 2

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: Approx. 0.2 in to 1.18 in (depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Food industry, Pharmaceutical industry, Folding elements

Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Safety information: Gas pressure springs should not be installed under pre-tension.

On request: Special oils and other special options. Alternative accessories. Different end position damping and extension speed. Other gas springs material 1.4404/1.4571, AISI 316L/316Ti (V4A) available on request.

End Fitting

End Fitting

Valve Technology, Stainless Steel, Extension force 2 lbs to 22 lbs (compressed up to 29 lbs)

B3.5 M3.5x0.6 Stud Thread **B3.5** Ø .12 Ø.31 .20 .20 L +/- 0.08 extended .16 thick **Performance and Dimensions** Eye A3.5-V4A A3.5-V4A Extension force max. Stroke L extended max. force 83 lbs Radius **TYPES** inch inch lbs R0.16 GS-8-20-V4A 0.79 2.83 22 GS-8-30-V4A 1.18 3.62 22 GS-8-40-V4A 1.57 4.41 22 C3.5-V4A GS-8-50-V4A 1.97 5.20 22 Angle Ball Joint C3.5-V4A 22 GS-8-60-V4A 2.36 5.98 max. force 83 lbs GS-8-80-V4A 22 3.14 7.56 .33 GS-8-30-AC-30-V4A **Ordering Example** Type (Push Type) Body 0.31" (8 mm) Stroke 1.18" (30 mm) D3.5-V4/ Piston Rod End Fitting A3.5-V4A Clevis Fork D3.5-V4A Body End Fitting C3.5-V4A max. force 83 lbs Nominal Force F₁ 7 lbs (30 N) Material (1.4404/1.4571, AISI 316L/316Ti, V4A) Mounting accessories see from page 220. G3.5-V4A Ball Socket G3.5-V4A max. force 83 lbs **Adjuster Knob DE-GAS-3.5** See page 191.

Standard Dimensions

GS-8-V4A A3.5-V4A D3.5-V4A OA3.5-V4A NG3.5-V4A NG3.5-V4A OG3.5-V4A

Technical Data

Extension force: 2 lbs to 22 lbs (compressed up to 29 lbs)

Progression: Approx. 28 % to 31 %

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4404/1.4571, AISI 316L/316Ti)

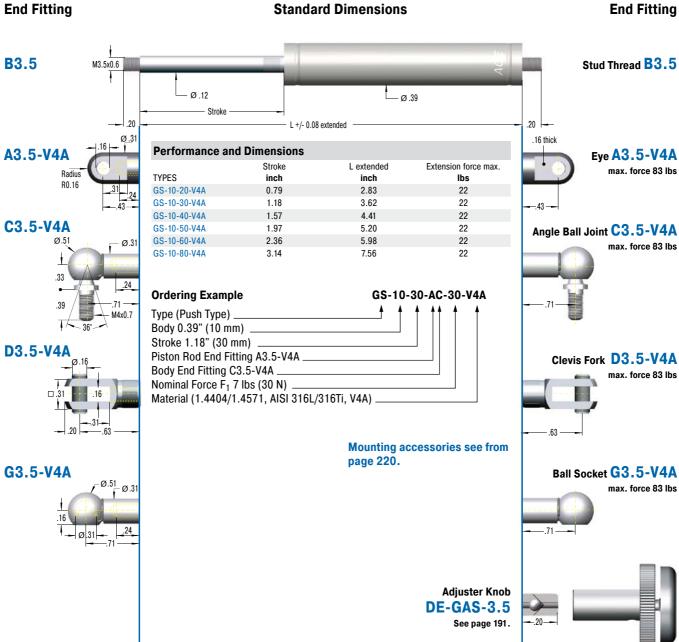
Mounting: We recommend mounting with piston rod downwards to take

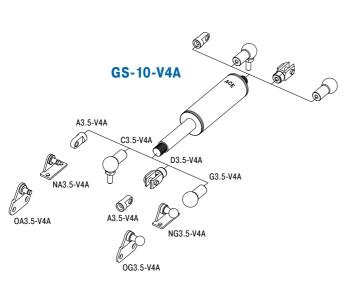
advantage of the built-in end position damping.

End position damping length: approx. 0.2"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by


Note: Special oil according to FDA 21 CFR 178.3570 of the food industry


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Issue 04.2018 - Specifications subject to change

Valve Technology, Stainless Steel, Extension force 2 lbs to 22 lbs (compressed up to 26 lbs)

Technical Data

Extension force: 2 lbs to 22 lbs (compressed up to 26 lbs)

Progression: Approx. 13 % to 16 %

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4404/1.4571, AISI 316L/316Ti)

Mounting: We recommend mounting with piston rod downwards to take

 $advantage \ of \ the \ built-in \ end \ position \ damping.$

End position damping length: approx. 0.2"

(depending on the stroke)

 $\begin{tabular}{ll} \textbf{Positive stop:} External positive stop at the end of stroke provided by \\ \end{tabular}$

the customer.

Note: Special oil according to FDA 21 CFR 178.3570 of the food

industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

End Fitting

End Fitting

Valve Technology, Stainless Steel, Extension force 3 lbs to 40 lbs (compressed up to 51 lbs)

B3.5 M3.5x0.6 Stud Thread **B3.5** Ø.16 - Ø .47 .20 .20 L +/- 0.08 extended .16 thick **Performance and Dimensions** A3.5-V4A Eye A3.5-V4A Extension force max. Stroke L extended max. force 83 lbs Radius **TYPES** inch inch lbs R0.16 GS-12-20-V4A 0.79 2.83 40 GS-12-30-V4A 1.18 3.62 40 GS-12-40-V4A 1.57 4.41 40 C3.5-V4A GS-12-50-V4A 1.97 5.20 40 Angle Ball Joint C3.5-V4A GS-12-60-V4A 2.36 5.98 40 max. force 83 lbs 3.14 GS-12-80-V4A 7.56 34 GS-12-100-V4A 3.94 9.13 34 .33 GS-12-120-V4A 4.72 10.71 27 GS-12-150-V4A 5.91 13.07 22 M4x0.7 **Ordering Example** GS-12-100-AA-30-V4A D3.5-V4/ Type (Push Type) Clevis Fork D3.5-V4A Body 0.47" (12 mm) max. force 83 lbs Stroke 3.94" (100 mm) Piston Rod End Fitting A3.5-V4A Body End Fitting A3.5-V4A Nominal Force F₁ 7 lbs (30 N) Material (1.4404/1.4571, AISI 316L/316Ti, V4A) G3.5-V4A Ball Socket G3.5-V4A Mounting accessories see from max. force 83 lbs page 220. **Adjuster Knob** DE-GAS-3.5 See page 191.

Standard Dimensions

GS-12-V4A A3.5-V4A D3.5-V4A G3.5-V4A NG3.5-V4A NG3.5-V4A

Technical Data

Extension force: 3 lbs to 40 lbs (compressed up to 51 lbs)

Progression: Approx. 20 % to 25 %

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

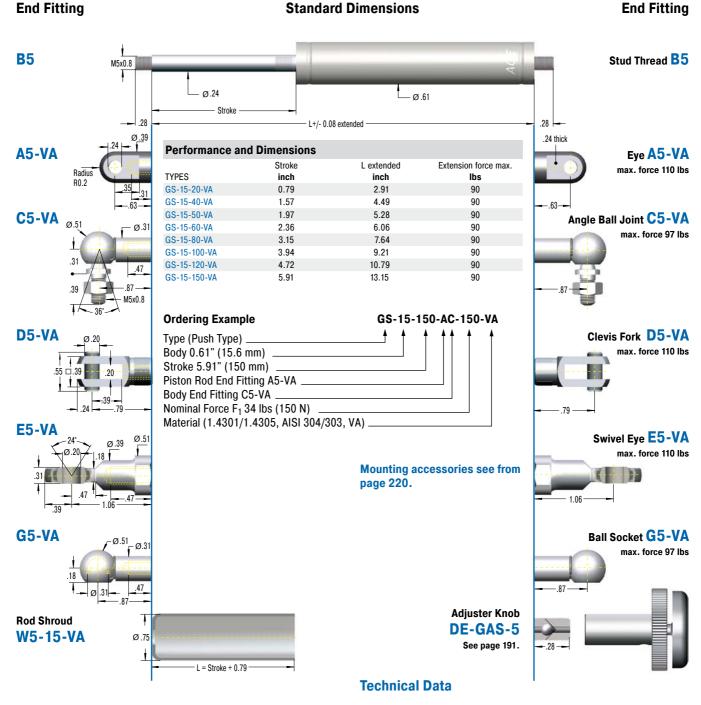
(1.4404/1.4571, AISI 316L/316Ti)

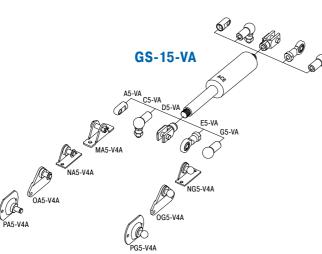
Mounting: We recommend mounting with piston rod downwards to take

advantage of the built-in end position damping.

End position damping length: approx. 0.39"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Stainless Steel, Extension force 9 lbs to 90 lbs (compressed up to 138 lbs)

Extension force: 9 lbs to 90 lbs (compressed up to 138 lbs)

Progression: Approx. 30 % to 53 %

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4301/1.4305, AISI 304/303)

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 0.79"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by

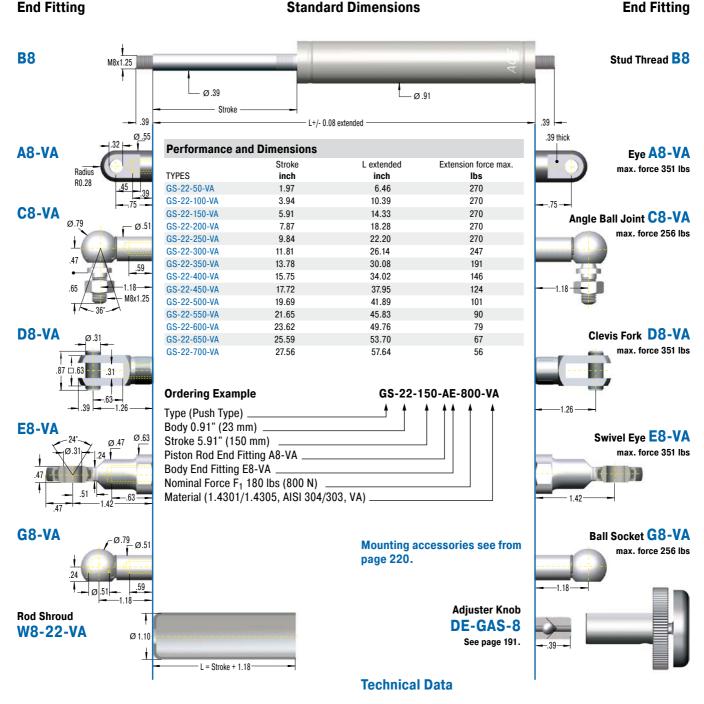
Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Stainless Steel, Extension force 11 lbs to 157 lbs (compressed up to 208 lbs)

Standard Dimensions End Fitting End Fitting B8 Stud Thread **B8** M8x1.25 Ø.31 Ø .75 39 L+/- 0.08 extended .39 thick **Performance and Dimensions** A8-VA Eye A8-VA Extension force max. Stroke L extended max. force 351 lbs Radius TYPES inch inch lbs R0.28 GS-19-50-VA 1.97 6.46 157 GS-19-100-VA 3.94 10.39 157 GS-19-150-VA 5.91 14.33 157 C8-VA Angle Ball Joint C8-VA GS-19-200-VA 7.87 18.27 157 max. force 256 lbs GS-19-250-VA 9.84 22.20 135 GS-19-300-VA 11.81 26.14 101 GS-19-150-AC-600-VA **Ordering Example** Type (Push Type) Body 0.75" (19 mm) D8-VA Clevis Fork D8-VA Stroke 5.91" (150 mm) max. force 351 lbs Piston Rod End Fitting A8-VA Body End Fitting C8-VA Nominal Force F₁ 135 lbs (600 N) Material (1.4301/1.4305, AISI 304/303, VA) E8-VA Swivel Eye E8-VA Mounting accessories see from max. force 351 lbs page 220. G8-VA Ball Socket G8-VA max. force 256 lbs **Adjuster Knob Rod Shroud DE-GAS-8** W8-19-VA Ø.9 See page 191. L = Stroke + 1.18 **Technical Data** Extension force: 11 lbs to 157 lbs (compressed up to 208 lbs) Progression: Approx. 28 % to 32 % Operating temperature range: -4 °F to +176 °F **GS-19-VA** Material: Outer body, Piston rod, End fittings: Stainless steel (1.4301/1.4305, AISI 304/303) Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping. End position damping length: approx. 0.79" (depending on the stroke) Positive stop: External positive stop at the end of stroke provided by Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

PG8-V4A


under pre-tension.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Safety information: Gas pressure springs should not be installed

Valve Technology, Stainless Steel, Extension force 22 lbs to 270 lbs (compressed up to 359 lbs)

Extension force: 22 lbs to 270 lbs (compressed up to 359 lbs)

Progression: Approx. 29 % to 33 %

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

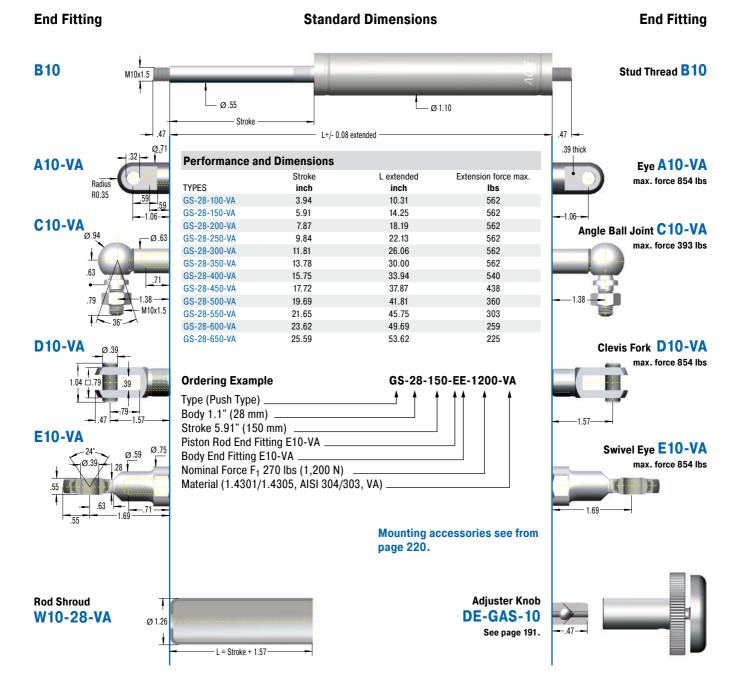
(1.4301/1.4305, AISI 304/303)

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

advantage of the bank in one position damping.

End position damping length: approx. 0.79"

(depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer

Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Stainless Steel, Extension force 34 lbs to 562 lbs (compressed up to 894 lbs)

Technical Data

Extension force: 34 lbs to 562 lbs (compressed up to 894 lbs)

Progression: Approx. 53 % to 59 %

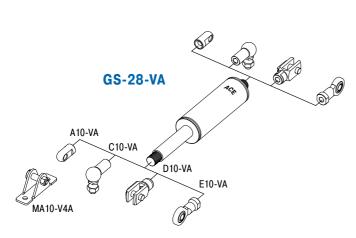
Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4301/1.4305, AISI 304/303)

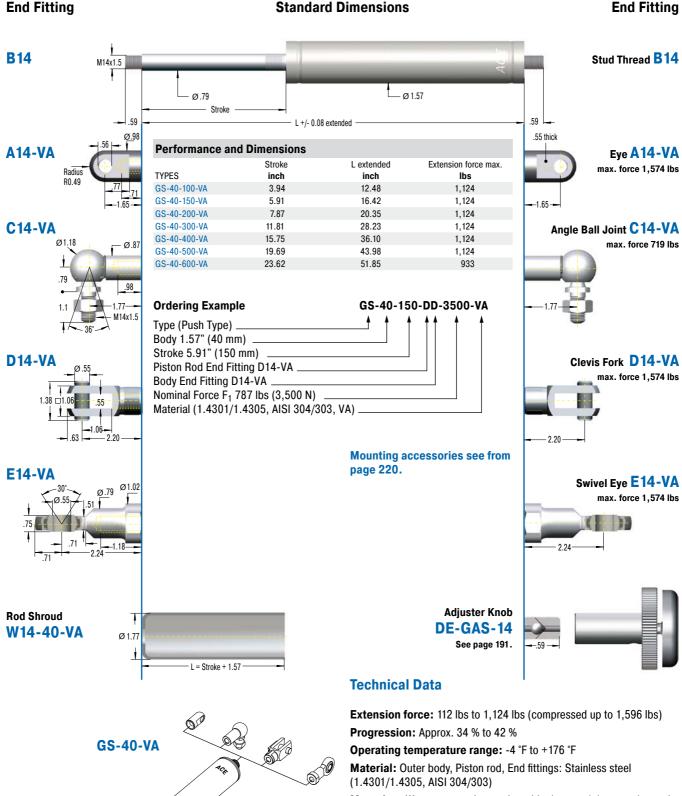
Mounting: We recommend mounting with piston rod downwards to take

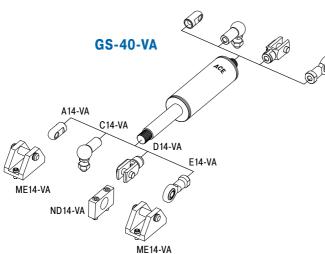
advantage of the built-in end position damping.


End position damping length: approx. 0.79"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Special oil according to FDA 21 CFR 178.3570 of the food industry


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Stainless Steel, Extension force 112 lbs to 1,124 lbs (compressed up to 1,596 lbs)

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 1.18"

(depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

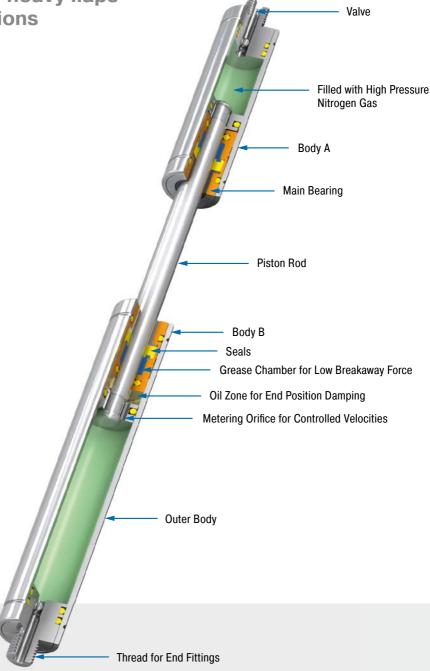
Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Stainless Steel Gas Springs (Push Type), V4A			
TYPES	Stroke inch	L extended inch	Dimensions see page
GS-15-20-V4A	0.79	2.91	164
GS-15-40-V4A	1.57	4.49	164
GS-15-50-V4A	1.97	5.28	164
GS-15-60-V4A	2.36	6.06	164
GS-15-80-V4A	3.15	7.64	164
GS-15-100-V4A	3.94	9.21	164
GS-15-120-V4A	4.72	10.79	164
GS-15-150-V4A	5.91	13.15	164
GS-19-50-V4A	1.97	6.46	165
GS-19-100-V4A	3.94	10.39	165
GS-19-150-V4A	5.91	14.33	165
GS-19-200-V4A	7.87	18.27	165
GS-19-250-V4A	9.84	22.20	165
GS-19-300-V4A	11.81	26.14	165
GS-22-50-V4A	1.97	6.46	166
GS-22-100-V4A	3.94	10.39	166
GS-22-150-V4A	5.91	14.33	166
GS-22-200-V4A	7.87	18.28	166
GS-22-250-V4A	9.84	22.20	166
GS-22-300-V4A	11.81	26.14	166
GS-22-350-V4A	13.78	30.08	166
GS-22-400-V4A	15.75	34.02	166
GS-22-450-V4A	17.72	37.95	166
GS-22-500-V4A	19.69	41.89	166
GS-22-550-V4A	21.65	45.83	166
GS-22-600-V4A	23.62	49.76	166
GS-22-650-V4A	25.59	53.70	166
GS-22-700-V4A	27.56	57.64	166
GS-28-100-V4A	3.94	10.31	167
GS-28-150-V4A	5.91	14.25	167
GS-28-200-V4A	7.87	18.19	167
GS-28-250-V4A	9.84	22.13	167
GS-28-300-V4A	11.81	26.06	167
GS-28-350-V4A	13.78	30.00	167
GS-28-400-V4A	15.75	33.94	167
GS-28-450-V4A	17.72	37.87	167
GS-28-500-V4A	19.69	41.81	167
GS-28-550-V4A	21.65	45.75	167
GS-28-600-V4A	23.62	49.69	167
GS-28-650-V4A	25.59	53.62	167
GS-40-100-V4A	3.94	12.48	168
GS-40-150-V4A	5.91	16.42	168
GS-40-200-V4A	7.87	20.35	168
GS-40-300-V4A	11.81	28.23	168
GS-40-400-V4A	15.75	36.10	168
GS-40-500-V4A	19.69	43.98	168
GS-40-600-V4A	23.62	51.85	168

Stainless Steel Accessories,	V4A
	Dimensions
TYPES	see page
A5-V4A	222
C5-V4A	222
D5-V4A	222
E5-V4A	222
G5-V4A	222
A8-V4A	223
C8-V4A	223
D8-V4A	223
E8-V4A	223
G8-V4A	224
A10-V4A	224
C10-V4A	224
D10-V4A	224
E10-V4A	224
A14-V4A	225
C14-V4A	225
D14-V4A	225
E14-V4A	225

GST-40 Tandem


Optimized dual force for heavy flaps and wide angle applications

Valve Technology Extension force 67 lbs to 1,124 lbs Stroke 1.97 in to 15.75 in

Cover two differing force ranges: Tandem gas springs by ACE are maintenance-free and ready-to-install. Two pressure tubes deliver different extension forces and progression curves. With this type of gas spring you cover the different force ranges between the start and end of an application. ACE provides free specification support to deliver a gas spring that meets your specific application needs. We manufacture and adjusted precisely to the required dynamics of the application.

A comprehensive range of accessories guarantees easy assembly and a broad range of uses, are specifically suitable for heavy loads with large opening angle. Stainless steel versions are available to meet environmental or appearance requirements.

Tandem push type gas springs from ACE are used in industrial applications such as in automation and machine building, in the automobile, electronics and furniture industries, but also in medical technology as well as for service hatches.

Technical Data

Extension force: 67 lbs to 1,124 lbs Piston rod diameter: Ø 0.79 in Progression: According to calculation

relating to your application.

Lifetime: Approx. 250,000 cycles

Operating temperature range: -4 °F to

+176 °F

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel with wear-resistant

coating

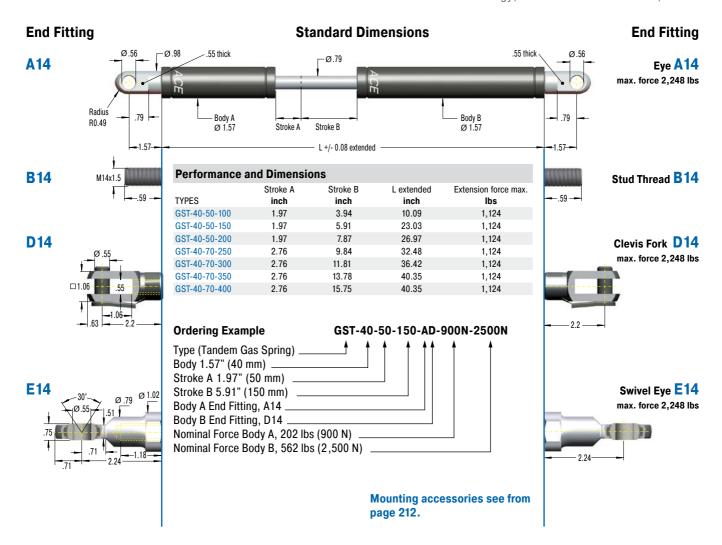
Operating fluid: Nitrogen gas and oil

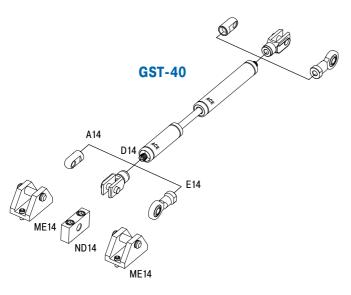
Mounting: In any position. Please adopt the mounting points determined by ACE.

End position damping length: Applicationspecific end position damping and extension speed.

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Folding elements, Loading and lifting equipment


Note: These gas springs are tailored to the relevant application and are therefore not available ex stock.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories. Material 1.4301/1.4305, AISI 304/303 (V2A) and 1.4404/1.4571, AISI 316L/316Ti (V4A).

Valve Technology, Extension force 67 lbs to 1,124 lbs

Technical Data

Extension force: 67 lbs to 1,124 lbs

Progression: According to calculation relating to your application.

Operating temperature range: -4 °F to +176 °F

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel

with wear-resistant coating

Mounting: In any position. Please adopt the mounting points deter-

mined by ACE.

End position damping length: Application-specific end position damping and extension speed.

Positive stop: External positive stop at the end of stroke provided by the customer.

Note: These gas springs are tailored to the relevant application and are therefore not available ex stock.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Application Examples

GS-12 Safe opening and closing

ACE industrial gas springs (push type) protect samples in an incubator, which is used for chemical and biochemical applications. The plexiglass hood, under which may be found valuable laboratory goods, is securely held open by two maintenance-free, readyto-install ACE industrial gas springs (push type) of the type GS-12-60-AA-X. With an end-position damping of 0.20 in and an extension force of 2.25 to 40.5 lbs, they help to handle the forces generated. The hood is always easily opened and remains in this position. It also remains securely shut when the incubator is in operation.

Very small ACE industrial gas springs (push type) enable careful opening and closing movements of a mini-incubator hood, under which may be found laboratory products

GFL Gesellschaft für Labortechnik mbH, 30938 Burgwedel, Germany

ACE industrial gas springs make opening and closing doors of rescue helicopters easier. The maintenance-free, sealed systems are installed in the access doors of helicopters of the EC 135. There, they allow the crew to enter or exit the helicopter quickly, thus contributing to enhanced safety. The GS-19-300 gas springs provide a defined retraction speed and secure engagement of the door lock. The integrated end position damper allows gentle closing of the door and saves wear and tear on the valuable, lightweight material.

Industrial gas springs: For safe entry and exit



Appkication Examples

GS-22-VA

Made-to-measure stainless steel gas springs

A special hygiene and toilet chair, designed for children and young people with disabilities, must be firmly lockable in the sit and tilt positions. The practical aid thereby provided for relatives and carers can be attributed to two lockable ACE industrial gas springs (push type) which were especially developed and manufactured for this application and operate on the basis of the so-called tilt-in-space function. This allows the chair to be tilted forwards and backwards and provides significantly more convenience for users and patients. In order to meet all hygiene requirements, the gas springs are constructed in stainless steel.

With inclination angles of 15 degrees to the front and rear, the ACE stainless steel gas springs facilitate the work of nurses
Rifton Equipment, Rifton, New York 12471, USA

GST-40

Tandemly-operated large flaps securely under control

Underground distribution systems are visually advantageous. To facilitate their servicing, the heavy covers of the often large supply systems are brought back to the surface with the help of ACE industrial tandem gas springs (push type). This is quite easily achieved thanks to the use of two pressure pipes, the result of which is two different force ranges. This means fitters must not endure laborious bending and a downward passage into the system of channels. In addition to these advantages, the springs benefit from their long service life and their capacity to be used, as stainless steel variants, in even the most hygienically-sensitive areas.

ACE industrial tandem gas springs (push type) enable easy maintenance of supply boxes by making the heavy flaps easier to operate Langmatz GmbH, 82467 Garmisch-Partenkirchen, Germany

Industrial Gas Springs – Pull Type

Alternatives for tight spaces and mounting requirements

If ACE gas push type springs cannot be used due to a lack of space, ACE's industrial gas pull type springs come into their own. These compact assistants with body diameters of 0.59" to 1.57" (15 to 40 mm) are effective in the direction of traction and work in the opposite way to the principle of gas push type springs.

This means that the gas pressure in the cylinder draws the piston rod in and, when closing a flap for example, supports the manual force required for a controlled motion. ACE's gas pull type springs are also self-contained, maintenance-free machine elements and equipped with a standard valve to individually regulate the gas pressure, whereby they cover forces between 7 to 1125 lbf (30 and 5,000 N). The ability to mount in any orientation and position along with an extensive range of DIN standardized accessories enable universal use.

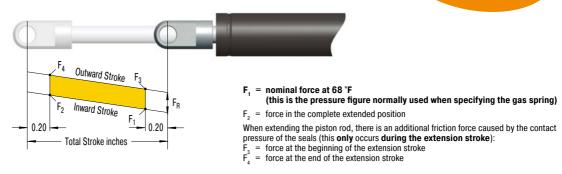
Compact design

Individual filling valve technology

Calculation program for specific design

Universally applicable

Function of a Gas Spring - Pull Type


Gas pull type springs work based on the reverse principle of a gas push type spring. They are also individually filled according to customer request to a certain pressure (extension force F_1). However, the piston rod here is pulled inwards by the gas pressure in the cylinder. The higher the pressure, the greater the traction force.

The piston ring surface between the piston rod and the inner tube is decisive for the function. When the piston rod pulls out, the nitrogen from the piston is compressed in the inner tube. The force increase (progression) of the gas spring is due to the rising pressure. The force increase is almost linear.

Calculation Principles

Force-Stroke Characteristics of Traction Gas Spring (Pull Type)

Free calculation service see page 188!

Gas Springs (Pull Type)		
	Progression	¹ Friction F _R
TYPES	approx. %	approx. in lbs
GZ-15	12 - 22 ²	12.36 - 31.47
GZ-19	21 - 28 2	4.50 - 8.99
GZ-28	28 - 30 ²	22.48 - 44.96
07.40	40 45 2	

¹ Depending on the filling force

Progression: (the slope of the force line in the diagram above) is due to the reduction of the internal gas volume as the piston rod moves from its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request.

Effect of termperature: The nominal F_1 figure is given at 68 °F. An increase of 50 °F will increase force by 3.4 %.

Filling tolerances: -4.50 lbs to +8.99 lbs or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Page 176

Page 182

Industrial Gas Springs - Pull Type

GZ-15 to GZ-40

Valve Technology

Very low progression rate

Hoods, Shutters, Machine housing, Conveyor systems

Valve Technology, Stainless Steel

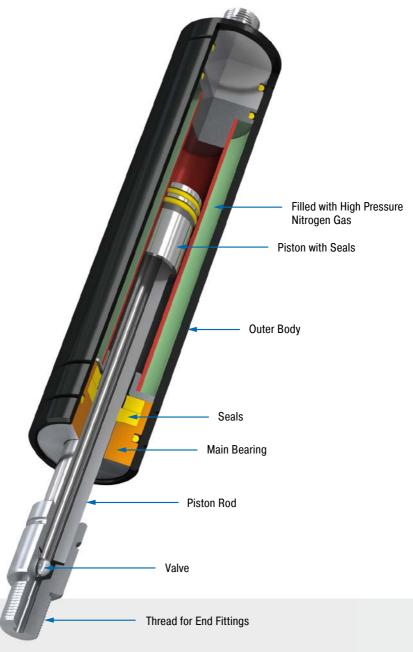
Very low progression rate with FDA approval

Hoods, Shutters, Machine housing, Conveyor systems

GZ-15-V4A to GZ-40-VA

² Depending on the stroke

GZ-15 to GZ-40


Very low progression rate

Valve Technology Traction force 9 lbs to 1,124 lbs Stroke 0.79 in to 25.59 in

The solution to a lack of space: If standard push type gas springs cannot be used due to a lack of space, ACE's industrial pull type gas springs are the solution. They work in the opposite way of standard push type gas springs. The piston rod is retracted when the cylinder is unloaded. The gas pressure in the cylinder draws the piston rod in.

ACE pull type gas springs offer the maximum service life thanks to the solid chrome-plated piston rod and an integrated sliding bearing. The maintenance-free and ready-to-install products are available in body diameters of 0.59" to 1.57" (15 to 40 mm) as well as forces from 8.99 lbs to 1,124 lbs. (40 to 5,000 N) and are available from stock with valve and a large selection of accessories. The traction force can be fine-tuned using the adjustment valve.

Gas traction springs from ACE are used in industrial applications, automation and machine building, especially in test equipment and in medical technology as well as in the electronics and furniture industries.

Technical Data

Traction force: 9 lbs to 1,124 lbs

Piston rod diameter: Ø 0.16 in to Ø 1.10 in

Progression: Approx. 12 % to 45 %

Lifetime: Approx. 6,561 ft

Operating temperature range: -4 °F to

+176 °F

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel or stainless steel with

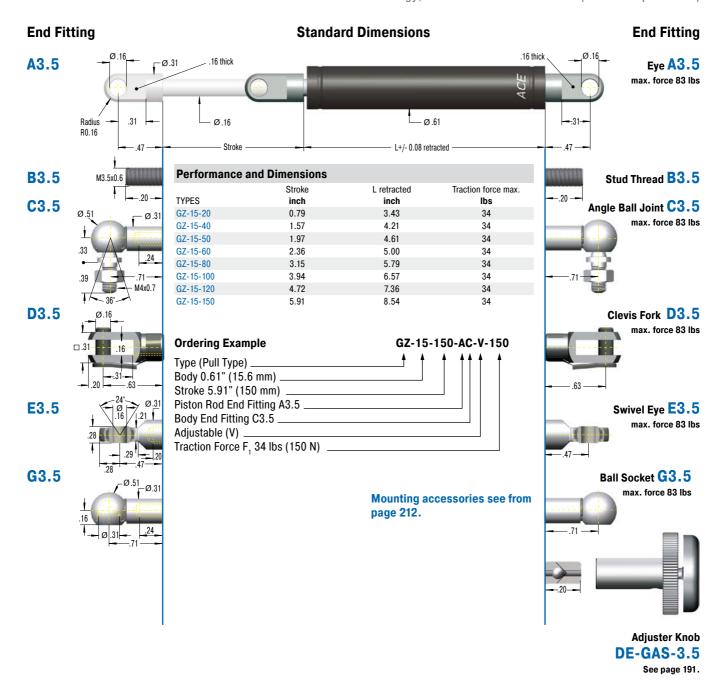
wear-resistant coating

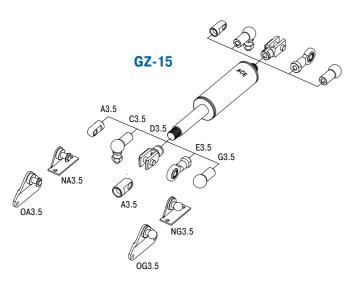
Operating fluid: Nitrogen gas

Mounting: With piston rod upwards.

End position damping length: Without damping. For end position damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop at the end of stroke provided by the customer.


Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Assembly stations, Vehicle technology, Folding elements


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories. Traction gas springs with end position damping also available on request.

Valve Technology, Traction force 11 lbs to 34 lbs (extended up to 41 lbs)

Technical Data

Traction force: 11 lbs to 34 lbs (extended up to 41 lbs)

Progression: Approx. 12 % to 22 %

Lifetime: Approx. 6,561 ft

Operating temperature range: -4 °F to +176 °F

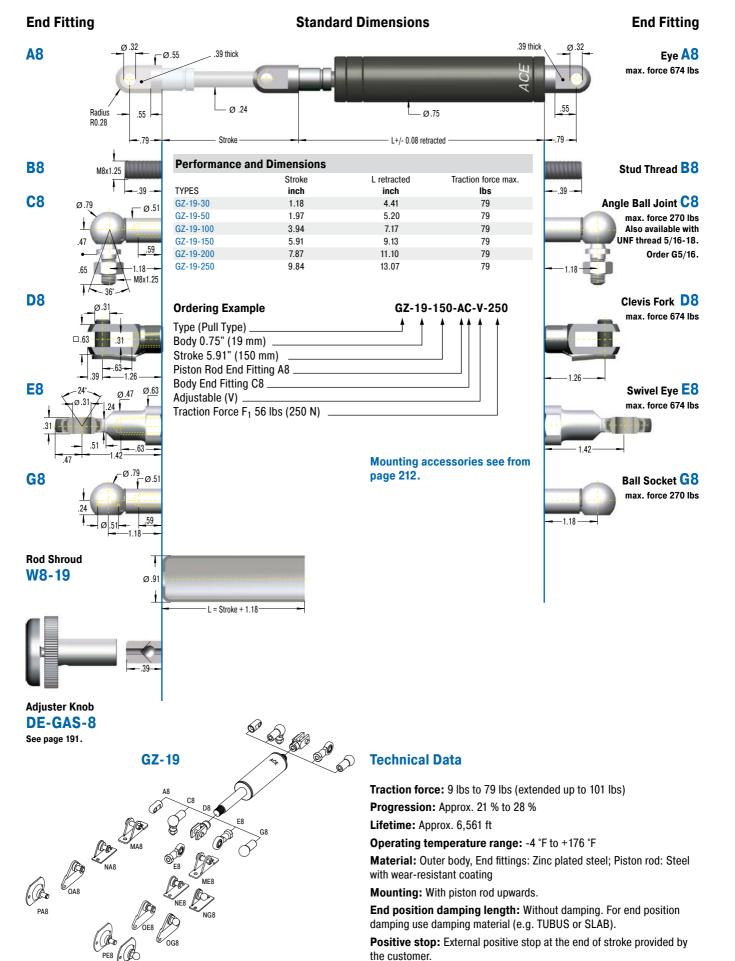
Material: Outer body, End fittings: Zinc plated steel; Piston rod:

Stainless steel (1.4301/1.4305, AISI 304/303)

Mounting: With piston rod upwards.

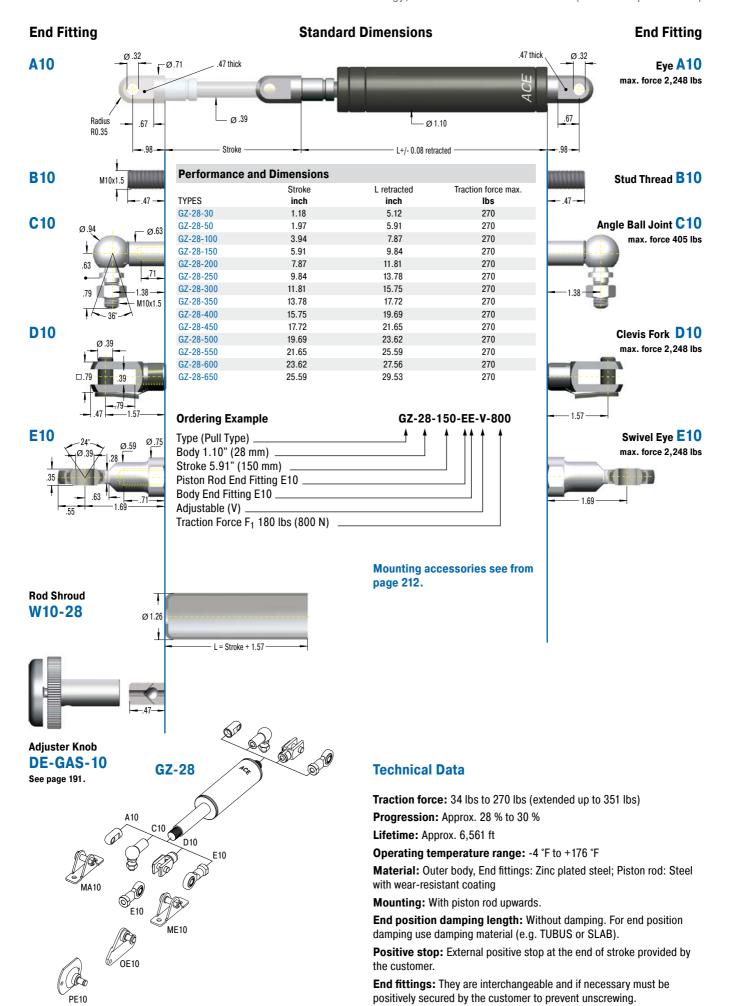
End position damping length: Without damping. For end position

damping use damping material (e.g. TUBUS or SLAB).

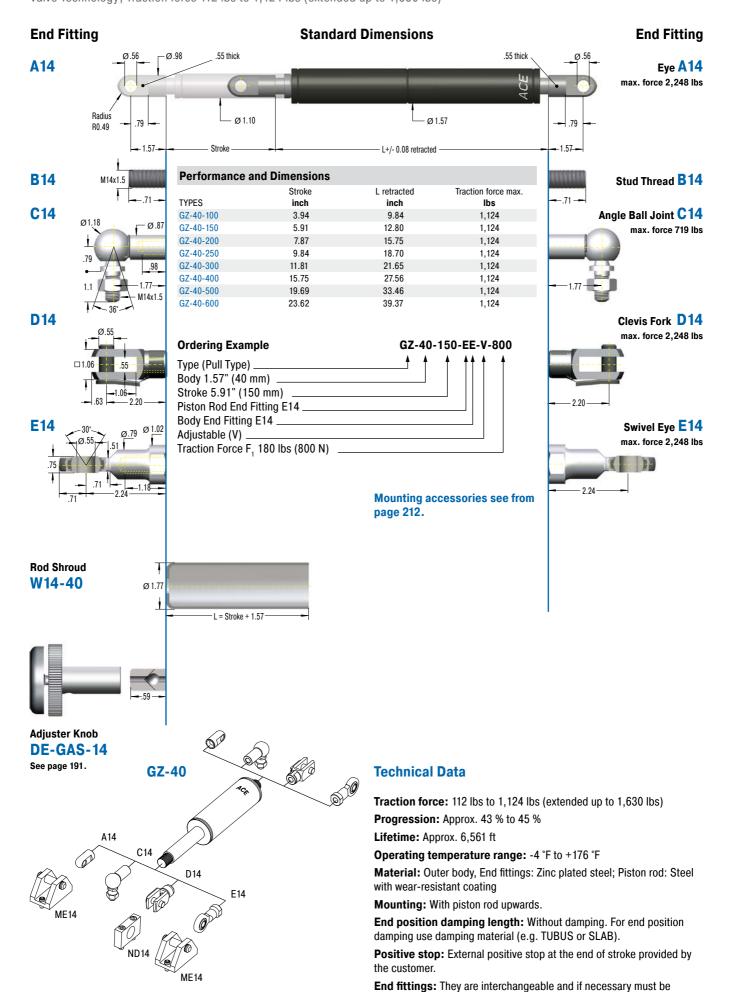

Positive stop: External positive stop at the end of stroke provided by

the customer.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.



Valve Technology, Traction force 9 lbs to 79 lbs (extended up to 101 lbs)


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Traction force 34 lbs to 270 lbs (extended up to 351 lbs)

Valve Technology, Traction force 112 lbs to 1,124 lbs (extended up to 1,630 lbs)

positively secured by the customer to prevent unscrewing.

Select the position of flap and pivot point.

Specify your application within our 3D-simulator.

Calculate your ACE Gas Springs.

Add mounting accessories.

Send an order request.

Talk to us!

Sometimes your problems are more complicated than an online tool can solve. ACE application engineers have the skills, knowledge and training to deliver a solution.

1-800-521-3320

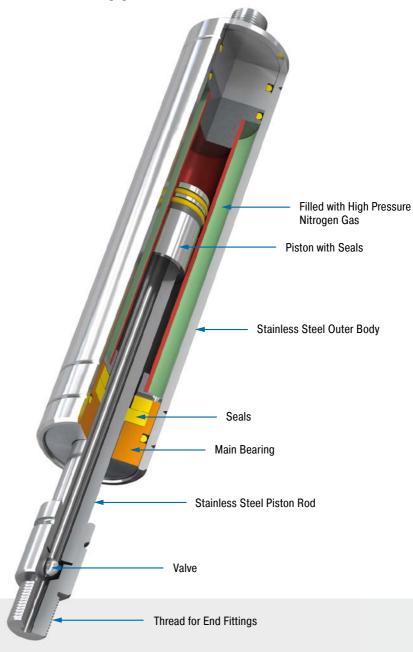
ACE Easy Sizing

Just a few simple steps to your perfect ACE Gas Spring

All available at www.acecontrols.com

Calculations

GZ-15-V4A to GZ-40-VA


Very low progression rate with FDA approval

Valve Technology, Stainless Steel Traction force 9 lbs to 1,124 lbs Stroke 0.79 in to 23.62 in

Brilliant performance when things become tight: For specific use e.g. in tough surroundings or small spaces, the broad spectrum of ACE stainless steel industrial pull type gas springs come in body diameters from 0.59" to 1.57" (15 to 40 mm). These units supplement the comprehensive programm of the ACE industrial pull type gas springs with valves.

This high quality design is rust free and is more robust against environmental impact compared with standard gas pull type springs. These stainless steel gas springs are also visually appealing, very durable and available, upon request, in many stroke lengths and traction forces. A comprehensive range of accessories in stainless steel guarantees easy assembly and a broad range of uses.

ACE industrial push type springs made of stainless steel are used in industries such as the chemical and food industry, in automobiles, plant engineering and shipbuilding and also in medical, military, environmental and water supply technology.

Technical Data

Traction force: 9 lbs to 1,124 lbs

Piston rod diameter: \emptyset 0.16 in to \emptyset 1.10 in

Progression: Approx. 11 % to 45 % Lifetime: Approx. 50,000 cycles Operating temperature range: -4 °F to

+176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel (1.4301/1.4305, AISI 304/303

and 1.4404/1.4571, AISI 316L/316Ti)

Operating fluid: Nitrogen gas **Mounting:** With piston rod upwards.

End position damping length: Without damping. For end position damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop in the pulling direction provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Food industry, Pharmaceutical industry, Folding elements

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories. Traction gas springs with end position damping also available on request. Other traction gas springs material 1.4404/1.4571, AISI 316L/316Ti (V4A) available on request.

End Fitting

End Fitting

Valve Technology, Stainless Steel, Traction force 11 lbs to 34 lbs (extended up to 41 lbs)

B3.5 M3.5x0.6 Stud Thread **B3.5** Ø.16 Ø.61 L +/- 0.08 retracted .20 .16 thick **Performance and Dimensions** A3.5-V4A Eye A3.5-V4A Traction force max. Stroke L retracted max. force 83 lbs **TYPES** inch inch lbs R0.16 GZ-15-20-V4A 0.79 3.43 34 GZ-15-40-V4A 1.57 4.21 34 GZ-15-50-V4A 1.97 4.61 34 C3.5-V4A GZ-15-60-V4A 2.36 5.00 Angle Ball Joint C3.5-V4A 34 GZ-15-80-V4A 3.15 5.79 max. force 83 lbs GZ-15-100-V4A 3.94 6.57 34 GZ-15-120-V4A 4.72 7.36 34 GZ-15-150-V4A 8.54 5.91 **Ordering Example** GZ-15-150-AC-V-150-V4A Type (Pull Type) D3.5-V4/ Body 0.61" (15.6 mm) Clevis Fork D3.5-V4A Stroke 5.91" (150 mm) max. force 83 lbs Piston Rod End Fitting A3.5-V4A Body End Fitting C3.5-V4A Adjustable (V) Traction Force F₁ 34 lbs (150 N) Material (1.4404/1.4571, AISI 316L/316Ti, V4A) Ball Socket G3.5-V4A G3.5-V4A Mounting accessories see from max. force 83 lbs page 220. **Adjuster Knob** DE-GAS-3.5 See page 191.

Standard Dimensions

GZ-15-V4A A3.5-V4A D3.5-V4A G3.5-V4A NG3.5-V4A NG3.5-V4A

Technical Data

Traction force: 11 lbs to 34 lbs (extended up to 41 lbs)

Progression: Approx. 11 % to 21 % **Lifetime:** Approx. 50,000 cycles

Operating temperature range: -4 °F to +176 °F

Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4404/1.4571, AISI 316L/316Ti) **Mounting:** With piston rod upwards.

 $\textbf{End position damping length:} \ \textbf{Without damping.} \ \textbf{For end position}$

damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop in the pulling direction provided

by the customer.

Standard Dimensions End Fitting B8 Stud Thread **B8** M8x1.25 Ø .75 Ø .24 39 Stroke L +/- 0.08 retracted .39 thick **Performance and Dimensions** A8-VA Stroke Traction force max. L retracted Radius max. force 351 lbs **TYPES** inch inch lbs R0.28 GZ-19-30-VA 1.18 5.12 79 GZ-19-50-VA 1.97 5.91 79 GZ-19-100-VA 3.94 7.87 79 C8-VA Angle Ball Joint C8-VA GZ-19-150-VA 5.91 9.84 79 max. force 256 lbs GZ-19-200-VA 7.87 11.81 79 GZ-19-250-VA 9.84 13.78 79 GZ-19-150-AC-V-150-VA **Ordering Example** M8x1.25 Type (Pull Type) D8-VA Body 0.75" (19 mm) Clevis Fork D8-VA Stroke 5.91" (150 mm) max. force 351 lbs Piston Rod End Fitting A8-VA Body End Fitting C8-VA Adjustable (V) Traction Force F₁ 34 lbs (150 N) Material (1.4301/1.4305, AISI 304/303, VA) E8-VA Swivel Eye E8-VA max. force 351 lbs Mounting accessories see from page 220. 1 42 G8-VA Ball Socket G8-VA max. force 256 lbs **Rod Shroud** W8-19-VA Ø.91

Adjuster Knob DE-GAS-8 GZ-19-VA See page 191. PA8-V4A PG8-V4A

Technical Data

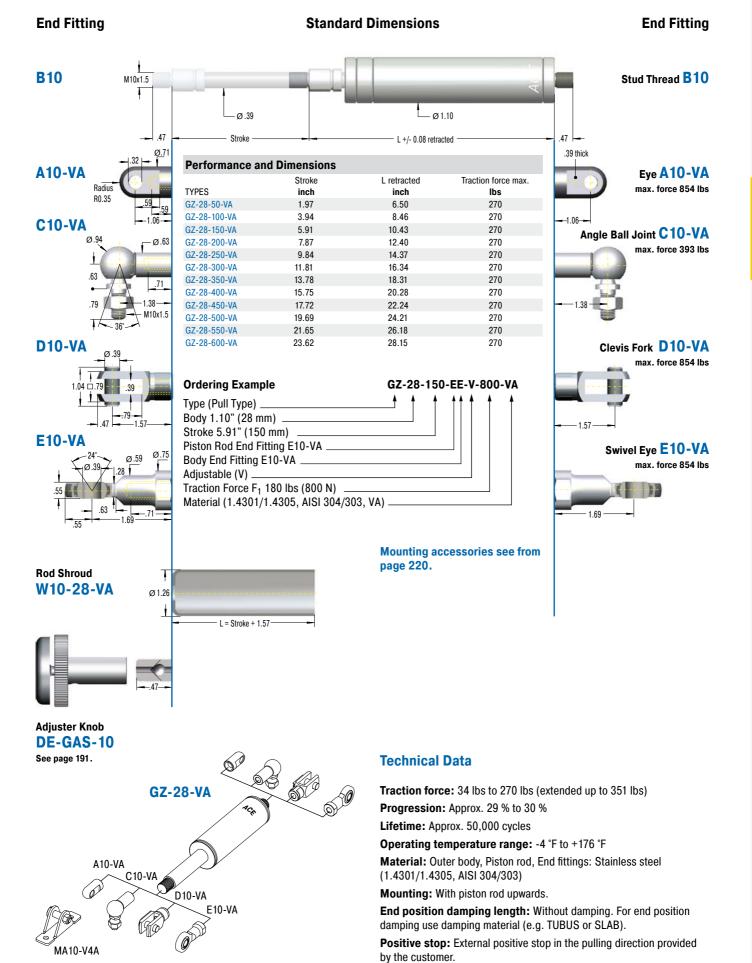
Traction force: 9 lbs to 79 lbs (extended up to 101 lbs)

Progression: Approx. 23 % to 28 % Lifetime: Approx. 50,000 cycles

Operating temperature range: -4 °F to +176 °F

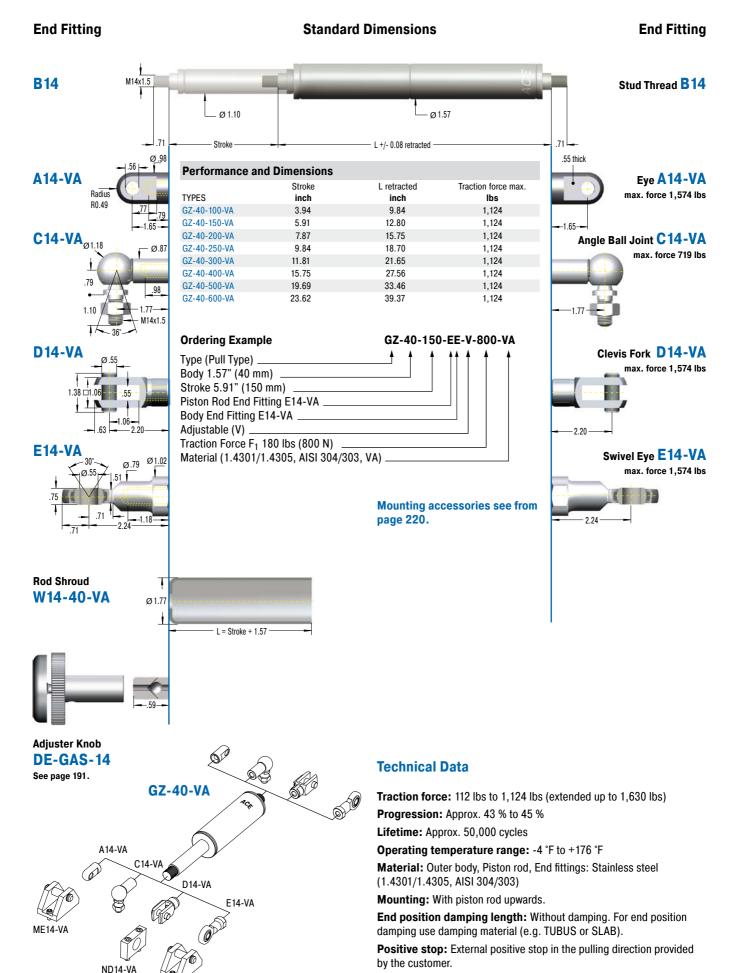
Material: Outer body, Piston rod, End fittings: Stainless steel

(1.4301/1.4305, AISI 304/303) Mounting: With piston rod upwards.


End position damping length: Without damping. For end position

damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop in the pulling direction provided by the customer.



Valve Technology, Stainless Steel, Traction force 34 lbs to 270 lbs (extended up to 351 lbs)

Valve Technology, Stainless Steel, Traction force 112 lbs to 1,124 lbs (extended up to 1,630 lbs)

ME14-VA

End fittings: They are interchangeable and if necessary must be

positively secured by the customer to prevent unscrewing.

Stainless Steel Gas Springs (Pull Type), V4A				
TYPES	Stroke inch	L retracted inch	Dimensions see Page	
GZ-19-30-V4A	1.18	5.12	184	
GZ-19-50-V4A	1.97	5.91	184	
GZ-19-100-V4A	3.94	7.87	184	
GZ-19-150-V4A	5.91	9.84	184	
GZ-19-200-V4A	7.87	11.81	184	
GZ-19-250-V4A	9.84	13.78	184	
GZ-28-50-V4A	1.97	6.50	185	
GZ-28-100-V4A	3.94	8.46	185	
GZ-28-150-V4A	5.91	10.43	185	
GZ-28-200-V4A	7.87	12.40	185	
GZ-28-250-V4A	9.84	14.37	185	
GZ-28-300-V4A	11.81	16.34	185	
GZ-28-350-V4A	13.78	18.31	185	
GZ-28-400-V4A	15.75	20.28	185	
GZ-28-450-V4A	17.72	22.24	185	
GZ-28-500-V4A	19.69	24.21	185	
GZ-28-550-V4A	21.65	26.18	185	
GZ-28-600-V4A	23.62	28.15	185	
GZ-40-100-V4A	3.94	9.84	186	
GZ-40-150-V4A	5.91	12.80	186	
GZ-40-200-V4A	7.87	15.75	186	
GZ-40-250-V4A	9.84	18.70	186	
GZ-40-300-V4A	11.81	21.65	186	
GZ-40-400-V4A	15.75	27.56	186	
GZ-40-500-V4A	19.69	33.46	186	
GZ-40-600-V4A	23.62	39.37	186	

Stainless Steel Accessories,	V4A
TYPES	Dimensions see Page
A5-V4A	222
C5-V4A	222
D5-V4A	222
E5-V4A	222
G5-V4A	222
A8-V4A	223
C8-V4A	223
D8-V4A	223
E8-V4A	223
G8-V4A	224
A10-V4A	224
C10-V4A	224
D10-V4A	224
E10-V4A	224
A14-V4A	225
C14-V4A	225
D14-V4A	225
E14-V4A	225

We'll Size Industrial Gas Springs for You

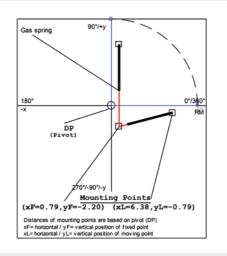
And we'll provide all necessary information for installation

To obtain the optimum operation with minimal hand force, gas spring must be properly sized and the mounting points have to be optimally placed.

It is important to identify the following points:

- gas spring size
- required gas spring stroke
- mounting points on flap and frame
- extended length of the gas spring
- required extension force
- hand forces throughout the complete movement on the flap

With our free calculation service you can eliminate the time-consuming calculation and send us your details by fax or e-mail. Just complete the information shown on the following page. Please attach a sketch of your application (a simple hand sketch is sufficient) in side view. Our application engineers will determine the optimum gas springs and mounting points and calculate the ideal situation to satisfy your requirements.


You will receive a quotation showing the opening and closing forces and our recommended mounting points to suit your application.

Example of a Calculation Offer

Input data - Identification data							
Start angle	αM:	0	•	Temperature	:	68	°F
Open angle	α:	90		Progression	:	32	8
Rd. ctr.grvty.	RM:	9.02	in.	Friction	:	20	N
Mass	m:	25	lb.	Ext. length	:	8.6	in.
No. gas springs	n:	2					
Rd. handforce	RH:	17.9	9 in.				
Dist. of fitting	L1:	0.79	in.				

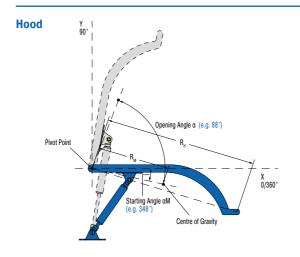
Required user hand-forces F1-F2/F3-F4=Hand forces for

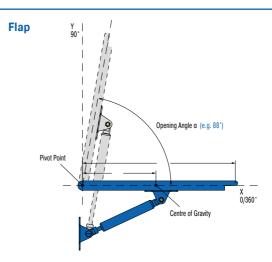
Angle [°]	F1-F2 [lbs]	F3-F4 [lbs]	Length [in.]		
0	-3	-2	5.75		
20	-3	-2	6.57		
40	-3	-2	7.32		
60	-1	0	7.95		
80	1	2	8.43		
90	2	3	8.58		
F1-F4 positive requires clockwise hand force					

Issue 04.2018 - Specifications subject to change

Calculation Service - Fax Form

Input Data


Gas Spring Push type Gas Spring Pull type **Gas spring fixing points** The fixed point of the frame and the moving point of the flap are critical for the optimum operation. Please attach a sketch of your application! (A few lines with dimensions are sufficient) Moving mass* Number of gas springs in parallel* n _____ pcs _____/day Number of movements* Ambient temperature __ °F If not shown by the sketch: Radius of center of gravity ___ inches R_H ______inches Radius of hand force Starting angle Opening angle


Desired Mounting Fittings

End Fi	tting		End I	Fitting
A	-			A 🗌
B	 -	B Stud Thread		В
□ c	-	C Angle Ball Joint	-	c 🗌
D		D Clevis Fork		D _
E		E Swivel Eye	-	E
F		F Inline Ball Joint		F
☐ G	-	G Ball Socket	-	G 🗌

The end fittings are interchangeable

e.g. -CE: C = Angle Ball Joint, E = Swivel Eye

Please send us a sketch with dimensions of your application! Without this sketch we won't be able to calculate.

Comments	
Requirement per year	
Machine type / reference	

Sender

Company	
Address	
ZIP / City	
Wahaita	
Website	

Dept.	
Name	
Telephone	
E-Mail	

Please complete and fax or email to: (248) 476-2470 or applications@acecontrols.com

^{*} Compulsory information

Notes & Liability

Mounting and Safety Instructions

Filling

Gas springs are filled with pure nitrogen gas. Nitrogen is an inert gas that does not burn or explode and is not poisonous. The internal pressure of gas springs can be up to 300 bar (4,350 psi). Do not attempt to open or modify them!

Gas springs are maintenance-free!

ACE gas springs will operate in ambient temperatures from -4 °F to +176 °F.

We can equip our springs with special seals to withstand temperatures as low as -49 °F or as high as +392 °F. Gas springs should not be placed over heat or in open fire!

ACE gas springs can be stored in any position. Pressure lost through long storage is not to be expected. There are no known negative effects of long-term storage, but there may be a sticking effect the first time you compress a spring. This may require a higher initial force to operate the gas spring for the first time (initial breakaway force).

Mounting

Gas springs should be installed with the piston rod downwards. This position ensures best damping quality. ACE gas springs include an integrated grease chamber which allows for alternative mounting opportunities.

The tolerance for the installation length is generally deemed to be \pm 0.08 in. If very high demands are placed on durability and stability, please avoid the combination of small diameter + long stroke + high force.

The filling tolerance is -4.50 lbs to 9.00 lbs or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Life Time

Generally, ACE gas springs are tested to 70,000 to 100,000 complete strokes. This is equivalent to the seal lifetime (depending on model size) to a distance travelled of 6.21 miles (lifetime of traction gas springs approx. 1.24 miles). During these tests the gas spring must not lose more than 5 % of its pressure. Depending upon the application and operating environment, the service life of these gas springs may be much longer. In practice 500,000 strokes or more have been achieved on some applications.

Disposal/Recycling

Please ask for our disposal recommendations.

Warnings and Liability

All gas springs are marked with the part number, the production date and a warning sign "Do not open high pressure". We are not responsible for any damages of any kind that arises due to goods that are not marked accordingly.

Valve Actuation & Refilling Kit

Valve Actuation with ACE DE-GAS

Simple, safe and reliable

De-gassing for controlled force reduction on valve gas springs

The reduction is made by screwing the DE-Gas on the male screwed end of the gas spring. The drain process is possible through light actuation of the push button. If too much nitrogen is discharged, the gas spring can be refilled by ACE.

Adjustment

- 1. Hold gas spring valve up.
- 2. Insert DE-GAS adjuster knob on thread of the valve.
- 3. Press the DE-GAS adjuster knob with light hand force until you can hear the nitrogen escaping. Press only briefly to avoid too much nitrogen being discharged.
- 4. After adjustment, remove the DE-GAS adjuster knob, mount the end fittings and test the gas spring in your application. If necessary repeat the procedure.

If you use 2 gas springs in parallel, both gas springs should have the same force to avoid bending forces or side load on the application. If necessary return to ACE to refill both gas springs to the same (average) force.

If too much nitrogen is discharged, the units can be returned to ACE for re-gassing.

DE-GAS

Gas Spring Refilling Kit

Flexible and easy to use

The ACE gas spring refilling kit offers you the opportunity to fill gas springs on location or adapt them individually. The refilling kit is equipped with all the parts you need to fill gas springs. Very precise filling of the gas springs is possible using the digital manometer. The table for determining the filling pressure of the gas springs is included with the case. The only thing missing from the delivery is the nitrogen.

The refilling kit contains all filling bells and adjuster knobs for the current ACE gas spring range.

Gas springs filled with the refilling kit must be measured on a calibrated measurement system by ACE for repeat production.

The refilling kit suits 2,900 psi nitrogen bottles with a thread of W24.32x1/14". Other connections are available upon request.

Part number: GS-FK-C

Hydraulic Dampers

Multi-talent in speed control

The ACE hydraulic dampers are similar in appearance to our industrial gas springs but are adjusted in the end position and work differently to the DVC family with individual speed adjusters for the push and pull direction. This provides users with the maximum flexibility.

Whether used as drive compensation or safety element, the retraction and extension speed of these ACE solutions can always be precisely set. This means that the speed of movement can be controlled, synchronization regulated in both directions and pivoting loads can be compensated. Depending on the model, the push and pull forces are between 6.75 lb to 2,023 lb (30 N and 40,000 N). These maintenance-free, ready-to-install products are available in body diameters of 0.47 in to 2.75 in (12 mm to 70 mm) and in stroke lengths up to 31.50 in (800 mm).

Hydraulic Dampers

DVC-32 and DVC-2 to DVC-6

Page 194

Adjustable, Without Free Travel

Multi-directional speed adjustment

Cylinder speed controls, Absorption control, Finishing and processing centers

HBD-15 to HBD-40

Page 196

Adjustable

Regulation at the highest level

Finishing and processing centers, Machine housing, Hoods, Shutters

HB-12 to HB-70 Page 202

Adjustable

Linear motion control

Conveyor systems, Transport systems, Furniture industry, Locking systems

Constant speed rates

Sensitive adjustment

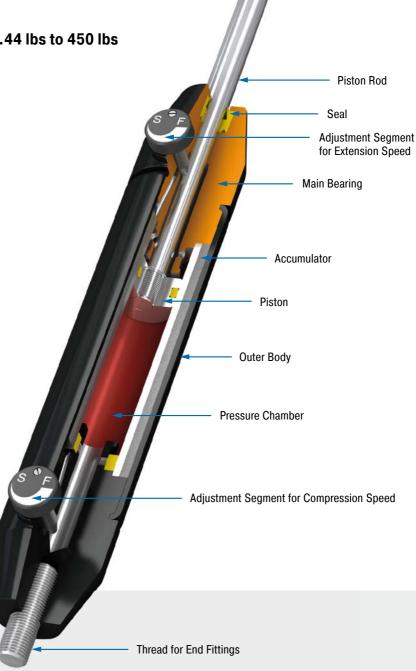
High quality and long lifetime

Easy to mount

DVC-32 and DVC-2 to DVC-6

Multi-directional speed adjustment

Adjustable, Without Free Travel


Compression and extension force 9.44 lbs to 450 lbs

Stroke 2.00 in to 6.00 in

Separately regulated in any stroke position: The hydraulic dampers of the product family DVC-32 and DVC-2 to DVC-6 are the first dampers to provide precise, independent, external adjustment of in-and-out speeds. With their individual adjustments for the push and pull direction as well as the bi-directional action, these are suitable as safety or control elements.

The great number of mounting accessories makes assembly of these ACE hydraulic dampers easier and allows these maintenance-free, ready-to-install and self-contained systems universally applicable. Qualitatively high grade, and at the same time simple to use; one of their uses is to absorb swinging loads.

These velocity controllers are used in the automotive sector, automation and machine building as well as in the electronics industry.

Technical Data

Compression and extension force:

9.44 lbs to 450 lbs

Outer body diameter: Ø 1.26 in

Piston rod diameter: Ø 0.31 in

Lifetime: Approx. 250,000 cycles

Operating temperature range: 32 °F to

149 °F

Adjustment: Steplessly adjustable

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by

the customer.

Damping medium: Automatic Transmission

Fluid (ATF)

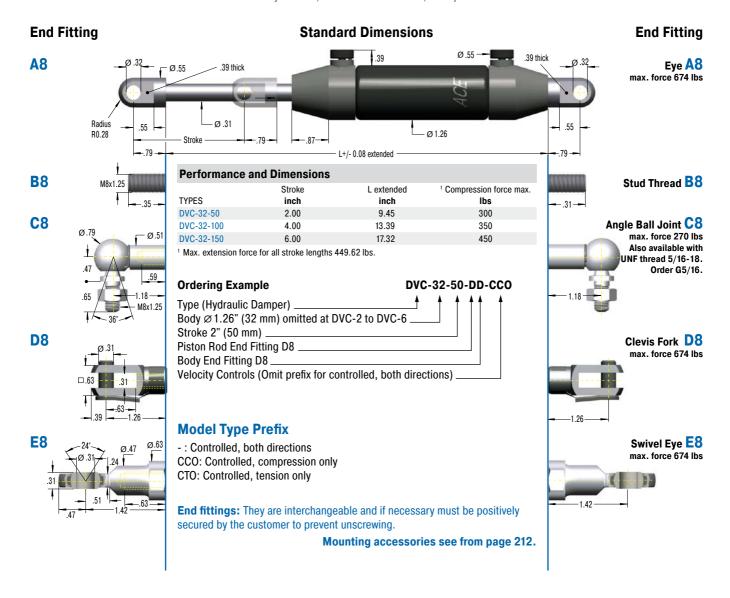
Material: Outer body: Coated aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

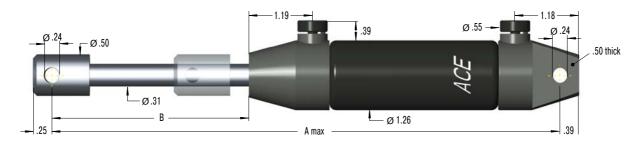
Application field: Cylinder speed controls, Absorption control, Finishing and processing contars

centers

Note: Increased break-away force if unit has not moved for some time. Damping force can be adjusted after installation.


End fittings: They are interchangeable and if necessary must be positively secured by the

customer to prevent unscrewing.


On request: Special oils and other special options. Alternative accessories available on request.

Adjustable, Without Free Travel, Compression and extension force 9.44 lbs to 450 lbs

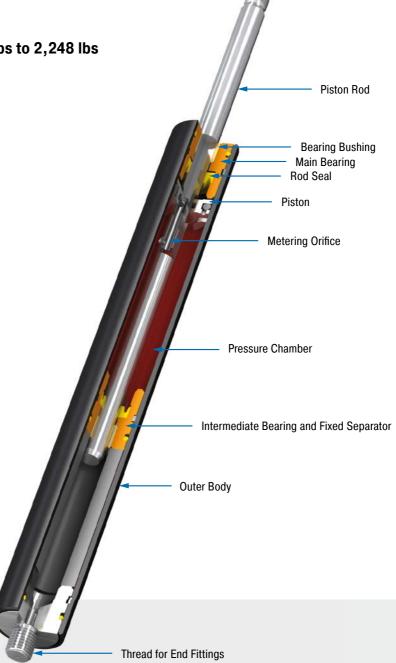
DVC-2 to DVC-6

Performance and Dimensions						
	Stroke	A max.	В	Compression force max.	Traction force max.	
TYPES	inch	inch	inch	lbs	lbs	
DVC-2	2.00	9.81	2.96	450	450	
DVC-4	4.00	13.81	4.94	450	450	
DVC-6	6.00	17.81	6.94	450	450	

HBD-15 to HBD-40

Regulation at the highest level

Adjustable


Compression and extension force 8 lbs to 2,248 lbs

Stroke 0.98 in to 31.5 in

ACE Controls HBD Hydraulic Dampers are maintenance-free, self-contained and sealed units. They are available with body diameters from 0.59" (15 mm) to 1.57" (40 mm) and with stroke lengths of up to 31.5" (800 mm). Unlike standard Hydraulic Dampers that include free travel up to 20 % of stroke, these dependable units have no free travel and are ideal for applications that require this level of performance. Double-acting Hydraulic Dampers are standard. However, a single acting design is available. Adjustment is easily achieved by pulling and turning the rod until the desired damping speed is achieved. The travel speed is adjustable and remains constant throughout the stroke.

The single acting version is controllable in one direction only, with free-flow in the opposite direction. A built-in antilock guard allows adjustment to be made at any damping rate without unit lock up. These reliable units offer long life-cycle performance. A variety of end fittings are available for ease of operation and installation, and are included.

HBD hydraulic dampers are use for process control, machine guards, lids, hatches, fire safety doors, arms for medical equipment, conveyors, swinging loads, machine tools, lift gates, drill feed control, amusement park rides, and more.

Technical Data

Compression and extension force: 8 lbs to 2.248 lbs

Outer body diameter: \emptyset 0.59 in to \emptyset 1.57 in Piston rod diameter: \emptyset 0.24 in to \emptyset 0.55 in

Lifetime: Approx. 250,000 cycles **Free travel:** These units have no free travel

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment

is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

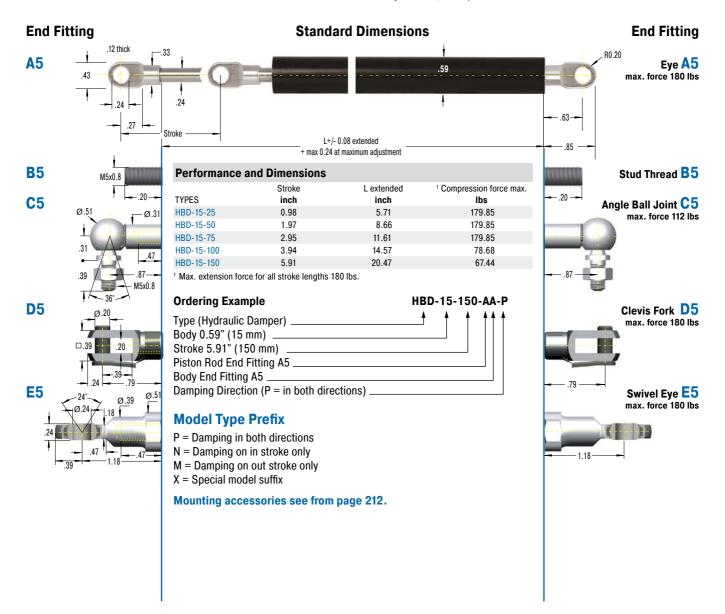
Damping medium: Petroleum oil

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

Application field: Finishing and processing centers, Machine housing, Hoods, Shutters,

Fire safety doors, Medical technology, Conveyor systems, Swivel units, Tool machines, Lift doors


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Safety information: Mechanical Stop required 0.04 in to 0.06 in before end of

stroke.

On request: Special oils, damping characteristics, and stroke lengths. Alternative accessories available on request.

HBD-15 A5 C5 D5 E5 NA5 NA5 NA5 NA5 PA5 GSB-01

Technical Data

Compression and extension force: 8 lbs to 180 lbs

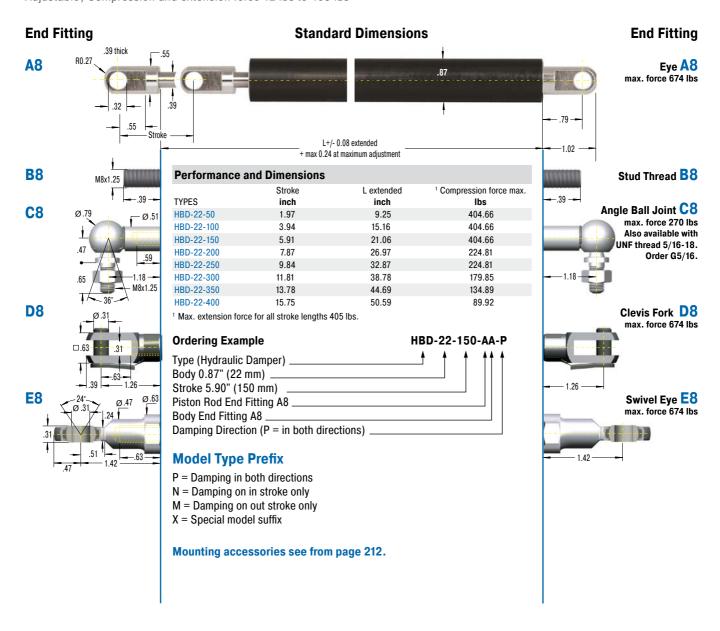
Free travel: These units have no free travel and are ideal for applications that require this level of performance.

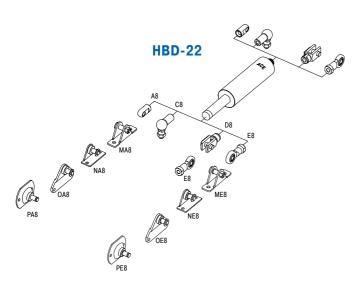
Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

ACE

Adjustable, Compression and extension force 12 lbs to 405 lbs

Technical Data

Compression and extension force: 12 lbs to 405 lbs

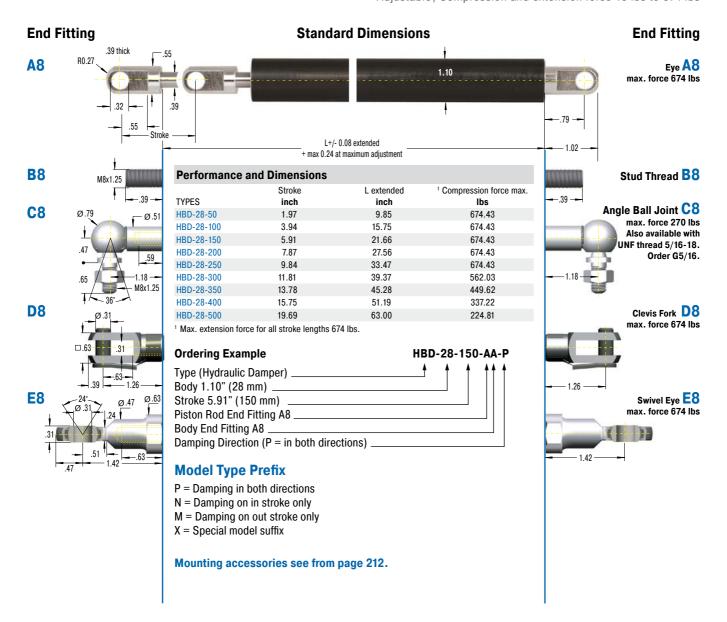
Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Adjustable, Compression and extension force 16 lbs to 674 lbs

Technical Data

Compression and extension force: 16 lbs to 674 lbs

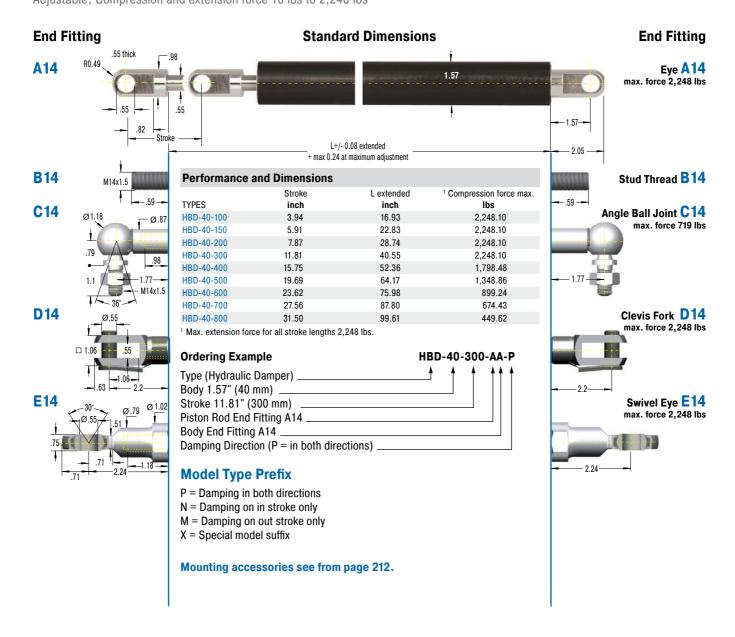
Free travel: These units have no free travel and are ideal for applications that require this level of performance.

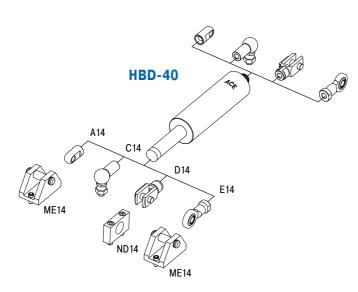
Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Adjustable, Compression and extension force 18 lbs to 2,248 lbs

Technical Data

Compression and extension force: 18 lbs to 2,248 lbs

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Dream it

We. Love. Challenges.

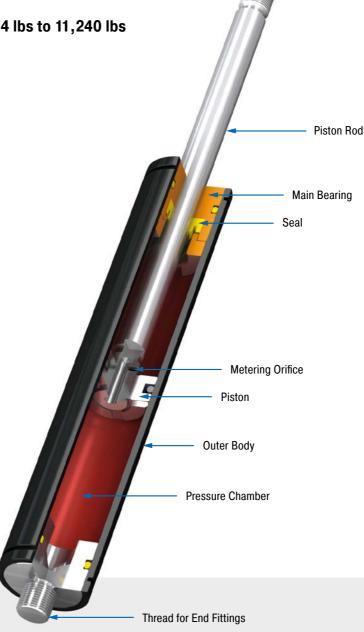
Ok, pure gold or fur-covered are not realistic options. But if you need a perfect solution for your individual needs, ACE has the tools and expertise to make it happen.

Call our experts
+1 800-521-3220 or go to www.acecontrols.com

ssue 04.2018 – Specifications subject to change

HB-12 to HB-70

Linear motion control



Stroke 0.98 in to 31.50 in

High quality and long service life: The hydraulic dampers of the product family HB can also be used as single or double acting brake. Its coated body and piston rods with wear-resistant surface treatment are features of high quality and long service life.

The maintenance free, ready-to-install and closed systems provide a constant feed rate and are adjustable. The control segment on the piston makes adjustment at the end position child's play. Thanks to a broad selection of end fittings the assembly is easy to mount, so that the damper can be universally deployed for damping swinging masses, such as in power or free conveyors.

On automotive, automation and machine building, medical technology or the electronics and furniture industry, these machine elements are found in a number of different areas.

Technical Data

Compression and extension force: 4 lbs to 11.240 lbs

Outer body diameter: \emptyset 0.47 in to \emptyset 2.76 in Piston rod diameter: \emptyset 0.16 in to \emptyset 1.18 in

Lifetime: Approx. 250,000 cycles

Free travel: Construction of the damper results in a free travel of approx. 20 % of ctroke

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

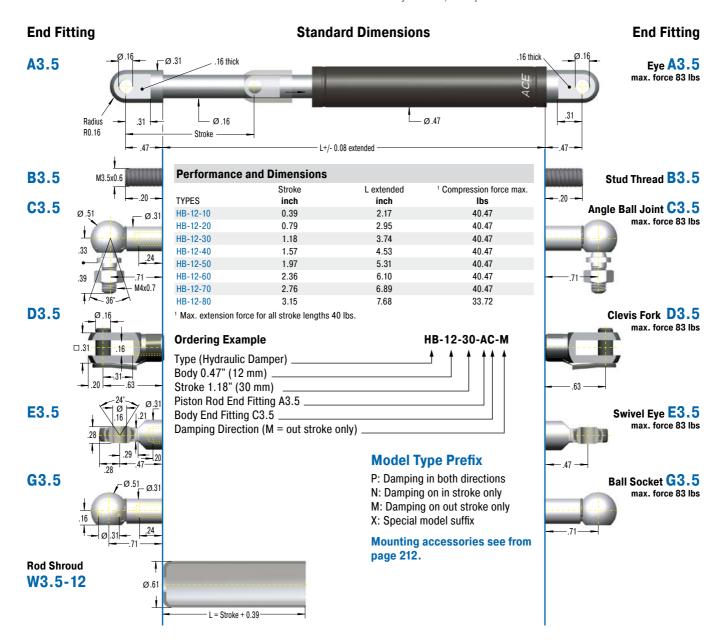
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

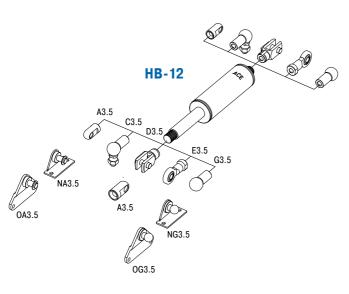
Positive stop: External positive stops 0.04 in to 0.24 in before the end of stroke provided by the customer.

Damping medium: Hydraulic oil

Material: Outer body: Coated steel; Piston rod: Steel or stainless steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position


Application field: Conveyor systems, Transport systems, Furniture industry, Locking systems, Sports equipment **Note:** Increased break-away force if unit has not moved for some time.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories available on request.

Adjustable, Compression and extension force 4 lbs to 40 lbs

Technical Data

Compression and extension force: 4 lbs to 40 lbs

Free travel: Construction of the damper results in a free travel of approx. 21 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

Clockwise rotation = increase of the damping

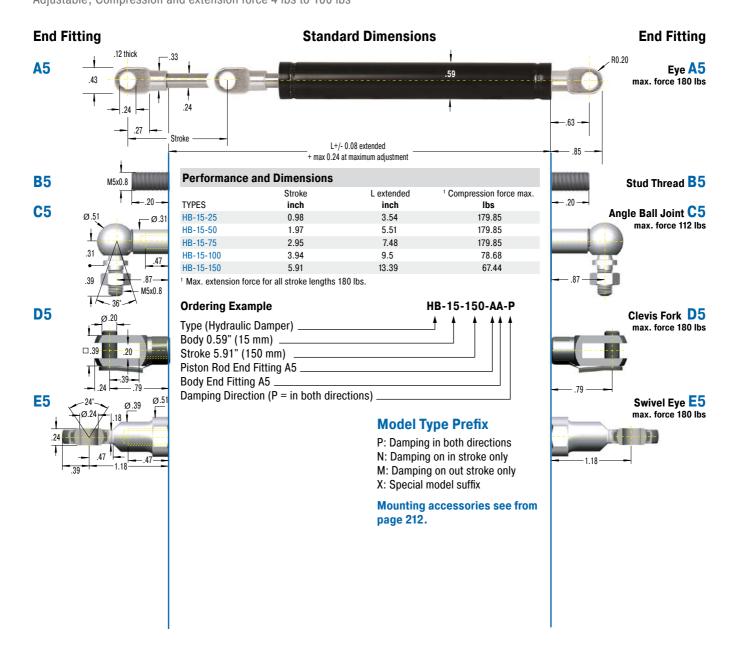
Anti-clockwise rotation = decrease of the damping

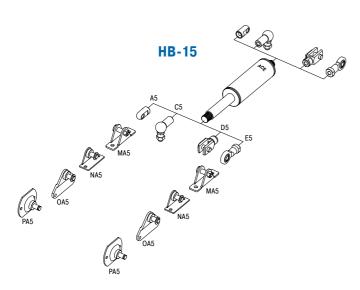
Damping force adjustable before installation. Adjustment can add a max. of 0.24 in to the L dimension.

Positive stop: External positive stops 0.04" to 0.06" before the end of

stroke provided by the customer.

Material: Outer body: Coated steel; Piston rod: Stainless steel


(1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel


Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

Adjustable, Compression and extension force 4 lbs to 180 lbs

Technical Data

Compression and extension force: 4 lbs to 180 lbs

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

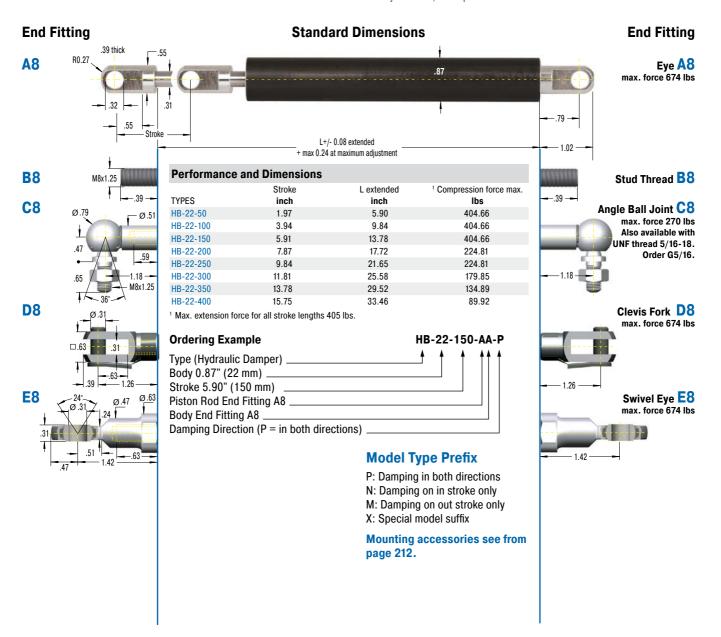
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping

Damping force adjustable before installation. Adjustment can add a max. of 0.24 in to the L dimension.

Positive stop: External positive stops 0.04" to 0.06" before the end of stroke provided by the customer.


Material: Outer body: Black anodized aluminium; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

Adjustable, Compression and extension force 7 lbs to 405 lbs

Technical Data

Compression and extension force: 7 lbs to 405 lbs

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

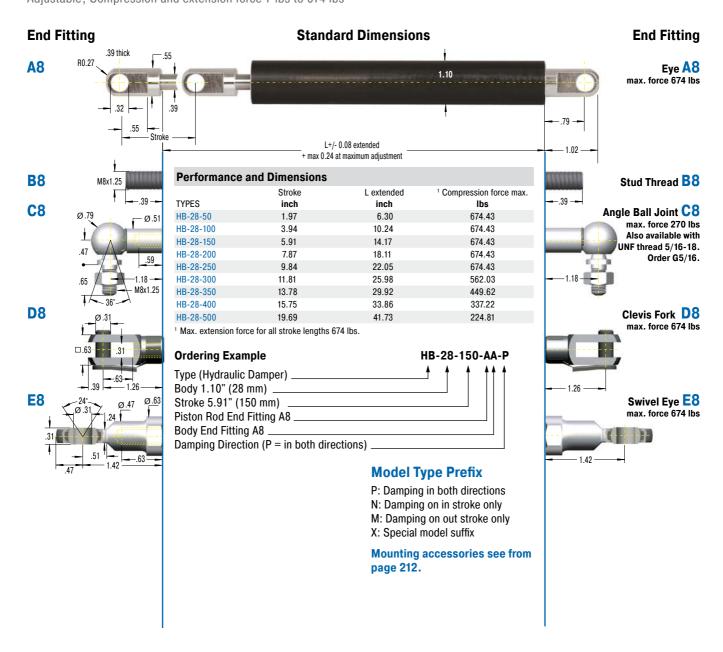
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

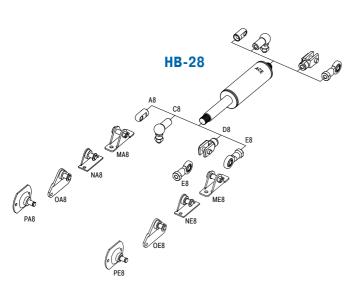
Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping

Damping force adjustable before installation. Adjustment can add a max. of 0.24 in to the L dimension.

Positive stop: External positive stops 0.04" to 0.06" before the end of stroke provided by the customer.


Material: Outer body: Black anodized aluminium; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel


Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

Adjustable, Compression and extension force 7 lbs to 674 lbs

Technical Data

Compression and extension force: 7 lbs to 674 lbs

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

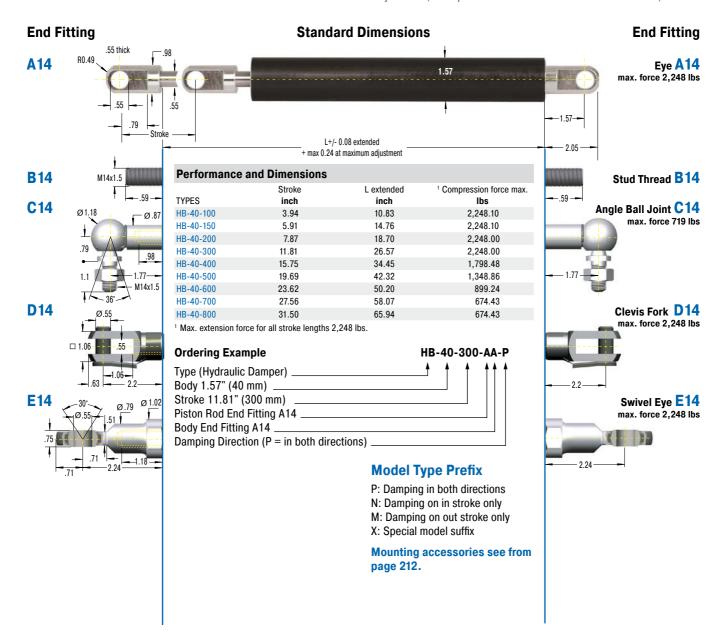
Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping


Damping force adjustable before installation. Adjustment can add a max. of 0.24 in to the L dimension.

Positive stop: External positive stops 0.04" to 0.06" before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

HB-40 A14 C14 D14 E14 ND14

Technical Data

Compression and extension force: 7 lbs to 2,248 lbs

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

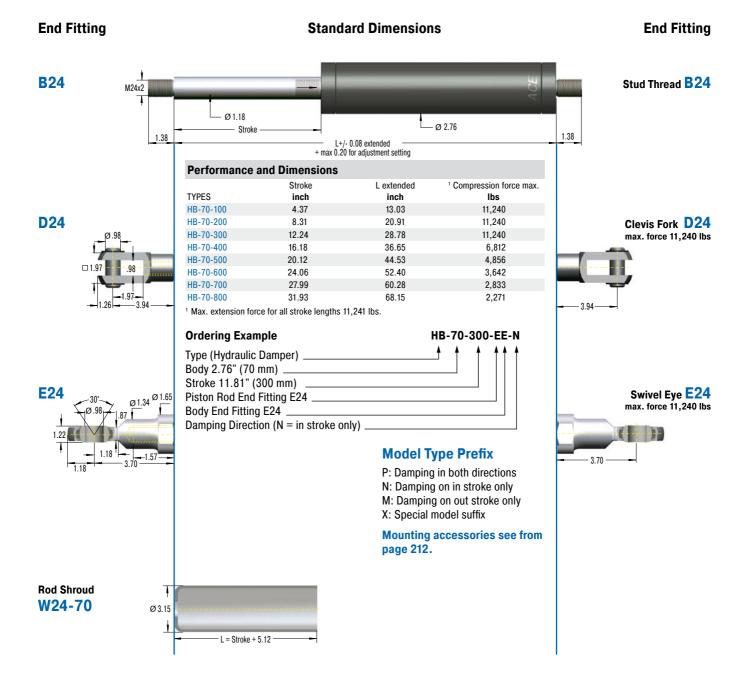
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

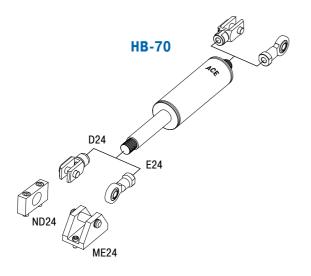
Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping

Damping force adjustable before installation. Adjustment can add a max. of 0.24 in to the L dimension.

Positive stop: External positive stops 0.04" to 0.06" before the end of stroke provided by the customer.


Material: Outer body: Black anodized aluminium; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel


Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

Adjustable, Compression and extension force 450 lbs to 11,241 lbs

Technical Data

Compression and extension force: 450 lbs to 11,241 lbs

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -4 °F to 176 °F

Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

Positive stop: External positive stops 0.20" to 0.24" before the end of stroke provided by the customer.

Material: Outer body: Coated steel; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

ACE Digital Tools

For more information about the calculation service see page 1881

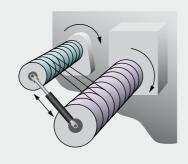
Print catalog? Everyone can. ACE offers more:

- Downloads: Product information in many languages
- ▶ PC calculation software & online calculation service
- Extensive CAD component libraries
- ACE-YouTube channel with video tips
- VibroChecker free award-winning iPhone App

All available at www.acecontrols.com

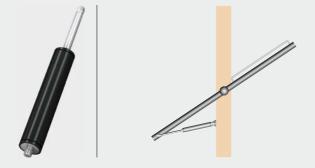
Application Examples

DVC-32


Precise unreeling

Hydraulic dampers bring the sled movement of this textile machine to a gentle stop. At the turning point of 287 lbs reeling spools, a sled should move up and down smoothly without causing a collision at the end of stroke position. The solution was provided by the hydraulic damper DVC-32-100. A self-contained sealed unit, ready to install and maintenance-free these units are ideal for precise control of speeds in both directions of travel. The travel speed is maintained throughout the entire stroke and can be independently adjusted in each direction of travel. Thanks to their compact design and wide choice of mounting accessories, these dampers could be easily integrated into this machine.

Textile machine unreels threads even better



HB-15 Operating speed of flaps top-regulated

In the past, operators of used-clothes containers could sustain injury because the flaps closed relatively quickly and uncontrollably. Various hydraulic dampers of the type HB-15, which are designed specifically for the type of container, regulate the synchronization of the flap in both directions and thereby serve to regulate the operating speed. To accommodate a range of requirements and to provide optimal protection against theft, different types with different strokes are mounted on flaps without damping, on large flaps with damping and on rotor flaps with damping.

Hydraulic dampers prevent fingers becoming trapped in used-clothes containers as they ensure more gentle opening and closing movements MCB Milieu & Techniek BV, 4704 SE Roosendaal, Netherlands

Application Examples

HB-40

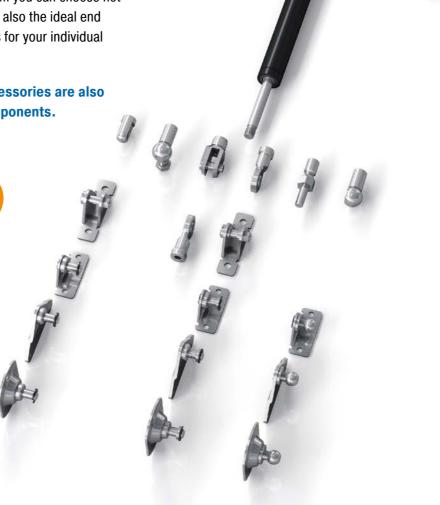
Swinging movements cushioned by hydraulic dampers

Passengers always feel the swinging movement involved when cable cars arrive at the ski station. Maintenance-free hydraulic dampers type HB-40-300 cushion these movements perfectly. Designers of the cable cars, connected by means of an articulated joint via a four-point frame and connection guide to the suspension rod, profit from the ability of the adjustable dampers to absorb compressive forces of up to 2,248 lbs on either side.

Hydraulic dampers for added convenience when operating cable cars

Mounting Accessories

for steel gas springs and hydraulic dampers

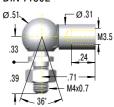

By taking advantage of the very extensive range of ACE end fittings and mounting brackets you can easily and simply install our gas springs and hydraulic dampers. You profit from the variety of DIN standard end fittings such as swivel eyes, clevis forks, angle ball joints, inline ball joints, and included ball sockets.

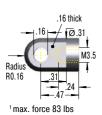
ACE also offers eye fittings made of wear-resistant steel to meet the higher specification requirements found in industrial applications. With over 30 different types available these mounting accessories provide an extensive range of combinations for optimum installations.

With the ACE selection program you can choose not only your ACE gas springs but also the ideal end fittings and mounting brackets for your individual application example.

The complete range of accessories are also available as individual components.

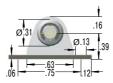
Infinite Combinations!



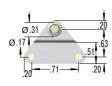

M3.5x0.6 (for GS-8, GS-10, GS-12, GZ-15, HB-12)

C3.5 Angle Ball Joint DIN 71802

1 max. force 83 lbs



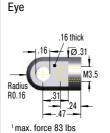
A3.5 Eye


NA3.5 Angle Bracket

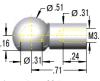
A3.5

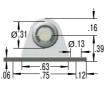
OA3.5 Side Bracket

1 max. force 40 lbs

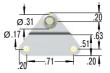


D3.5 Clevis Fork DIN 71752





G3.5 Ball Socket DIN 71805



1 max. force 40 lbs

NG3.5

Angle Bracket

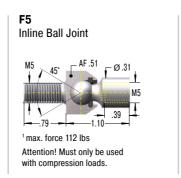
OG3.5 Side Bracket

¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M5x0.8 (for GS-15, HBD-15, HB-15)

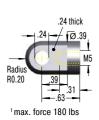
Angle Ball Joint
DIN 71802

Ø.51

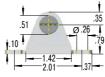

.31

.47

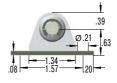
.90


87

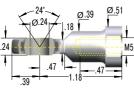
D5 Clevis Fork DIN 71752 Ø .20 D.39 .20 ... M5 M5 M6



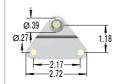
C5


1 max. force 112 lbs

1 max. force 112 lbs


NA5 Angle Bracket

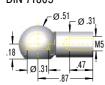
1 max. force 90 lbs


E5 Swivel Eye DIN 648

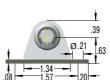
1 max. force 180 lbs

GSB-01 Side Bracket

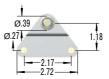
1 max. force 112 lbs


PA5 Round Bracket

1 max. force 112 lbs


G5 Ball Socket DIN 71805

1 max. force 112 lbs


NG5 Angle Bracket

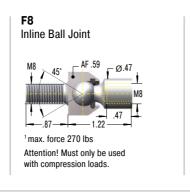
1 max. force 90 lbs

GSB-02 Side Bracket

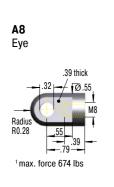
1 max. force 112 lbs

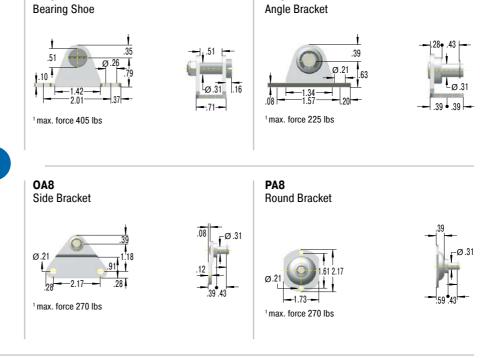
Round Bracket

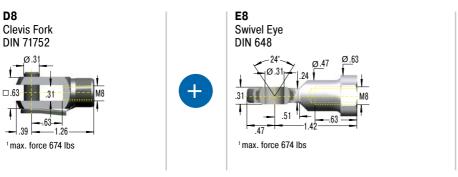
1 max. force 112 lbs


¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

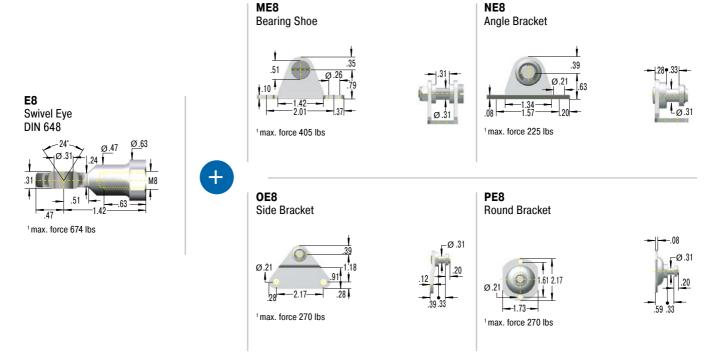
NA8




M8x1.25 (for GS-19, GS-22, GZ-19, HBD-22, HBD-28, HB-22, HB-28, DVC-32)

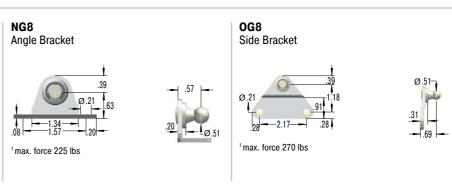


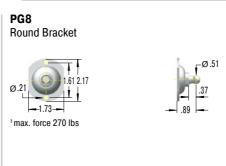
MA8



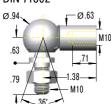
¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M8x1.25 (for GS-19, GS-22, GZ-19, HBD-22, HBD-28, HB-22, HB-28, DVC-32)





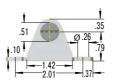
1 max. force 270 lbs



 $^{^{1}}Attention!\ Max.\ static\ load\ in\ Newtons.\ Beware\ force\ increase\ during\ compression\ (progression)\ and\ observe\ max.\ force\ limit.$

M10x1.5 (for GS-28, GZ-28, HBD-50)

1 max. force 405 lbs


A10 Eye

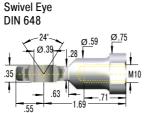
1 max. force 2,248 lbs

MA10 Bearing Shoe

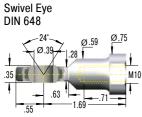
Attention! Must only be used with compression loads.

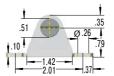
1 max. force 405 lbs

E10



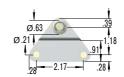
D10 Clevis Fork DIN 71752


1 max. force 2,248 lbs


1 max. force 2,248 lbs

E10

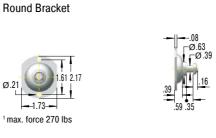
1 max. force 2,248 lbs


ME10 Bearing Shoe

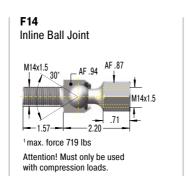
1 max. force 405 lbs

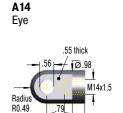
Ø.39

OE10 Side Bracket



1 max. force 270 lbs

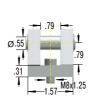

PE10



¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M14x1.5 (for GS-40, GST-40, GZ-40, HBD-40, HB-40)

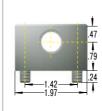
1 max. force 719 lbs

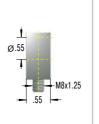


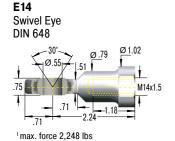
Bearing Shoe

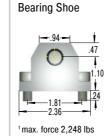
1 max. force 2,248 lbs

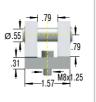
Mounting Flange

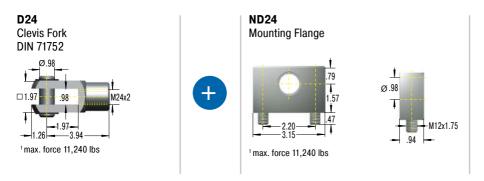

ND14

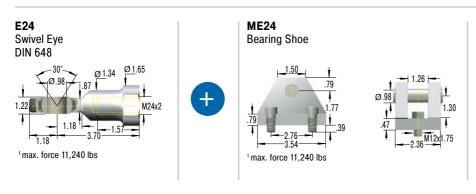





1 max. force 2,248 lbs


ME14





¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M24x2 (for GS-70, HB-70)

¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

Mounting Accessories

for stainless steel gas springs and hydraulic dampers

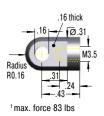
For our gas springs and hydraulic dampers made of stainless steel we also offer a flexible product range of DIN standardized end fittings and mounting brackets. These eyes, swivel eyes, clevis forks, angle ball joints, ball sockets, inline ball joints and mounting brackets are also made of sturdy stainless steel and can be easily combined.

The high-quality stainless steel accessories are rustproof and weakly magnetic. Just as with the corresponding stainless steel gas springs and hydraulic dampers, they are preferred in the food, electronics and ship building industries along with medical and cleanroom technology.

All ACE stainless steel gas springs and the appropriate mounting accessories are individually designed for each application with the ACE calculation program.

The entire range of stainless steel accessories is also available separately.

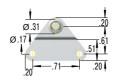
Infinite Combinations!



(for GS-8-V4A, GS-10-V4A, GS-12-V4A, GZ-15-V4A) M3.5x0.6

C3.5-V4A Angle Ball Joint

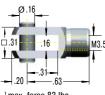
A3.5-V4A Eye



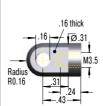
1 max. force 40 lbs

OA3.5-V4A

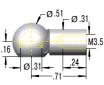
Side Bracket



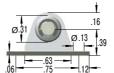
.23 • .17


D3.5-V4A

Clevis Fork

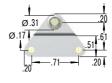

1 max. force 83 lbs

G3.5-V4A **Ball Socket**



1 max. force 83 lbs

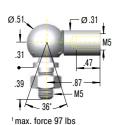
NG3.5-V4A


1 max. force 83 lbs

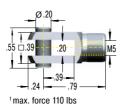
Angle Bracket

1 max. force 40 lbs

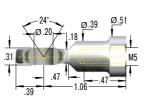
1 max. force 40 lbs



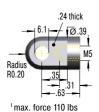
¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.



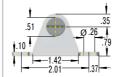
M5x0.8 (for GS-15-VA)


C5-VA Angle Ball Joint

D5-VA Clevis Fork

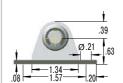


E5-VA Swivel Eye

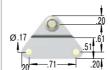


1 max. force 110 lbs

A5-VA Eye



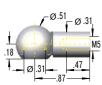
1 max. force 112 lbs


NA5-V4A Angle Bracket

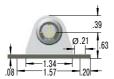
1 max. force 90 lbs

OA5-V4A Side Bracket

1 max. force 40 lbs


PA5-V4A Round Bracket

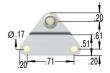
1 max. force 112 lbs


G5-VA Ball Socket

1 max. force 97 lbs

NG5-V4A

Angle Bracket



1 max. force 90 lbs

OG5-V4A

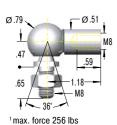
Side Bracket

1 max. force 40 lbs

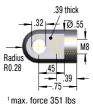
PG5-V4A

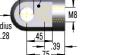
Round Bracket

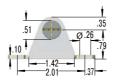
1 max. force 112 lbs

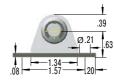


¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.


(for GS-19-VA, GS-22-VA, GZ-19-VA) M8x1.25


C8-VA Angle Ball Joint

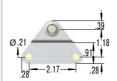

D8-VA Clevis Fork 1 max. force 351 lbs


MA8-V4A Bearing Shoe

1 max. force 405 lbs

NA8-V4A

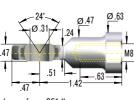
Angle Bracket


1 max. force 225 lbs

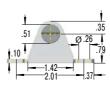
PA8-V4A

OA8-V4A Side Bracket

1 max. force 270 lbs


Ø.31_

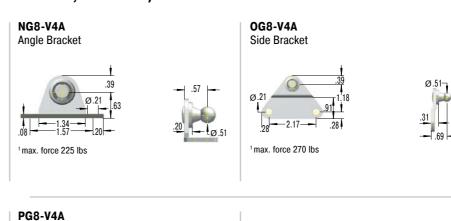
E8-VA


Swivel Eye

1 max. force 351 lbs

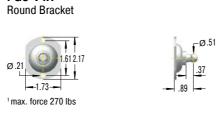
MA8-V4A

Bearing Shoe

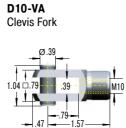

1 max. force 405 lbs

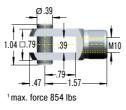
¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

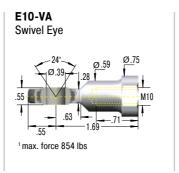
(for GS-19-VA, GS-22-VA, GZ-19-VA) M8x1.25

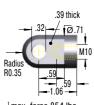


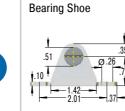
1 max. force 256 lbs



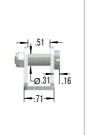

(for GS-28-VA, GZ-28-VA) M10x1.5




1 max. force 393 lbs

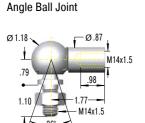


A10-VA Eye


1 max. force 854 lbs

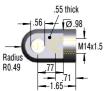
MA10-V4A

1 max. force 405 lbs



¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M14x1.5 (for GS-40-VA, GZ-40-VA)


C14-VA

1 max. force 719 lbs

A14-VA

Eye

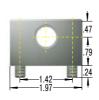
1 max. force 1,574 lbs

ME14-VA Bearing Shoe

1 max. force 2,248 lbs

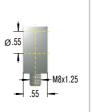
ND14-VA

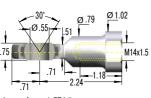
Mounting Flange



D14-VA

Clevis Fork




1 max. force 2,248 lbs

ME14-VA

E14-VA

Swivel Eye

1 max. force 1,574 lbs

Bearing Shoe

1 max. force 2,248 lbs

¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

Hydraulic Feed Controls

Regulate feed rates in the best way

ACE Hydraulic feed controls are recommended as the perfect solution when sawing, cutting, drilling and in order to prevent the stick-slip effect on pneumatic cylinders. They can be precisely adjusted and provide speeds from 1/2"/min. (12 mm/min.) with a very low feed force or up to 1.5"/min. (38 m/min.) with a high feed rate

These maintenance-free, ready-to-install hydraulic feed controls are self-contained hydraulic elements regulated by a precision throttle. The feed rate is set from the outside by turning the setting adjuster. The tried-and-tested rolling diaphragms used in many ACE shock absorbers also serve as a dynamic sealing element for a hermetic seal as well as volume compensation for the piston rod and provide the resetting of the piston when the force is removed.

Hydraulic Feed Controls

VC25 Page 228

Adjustable

For precision adjustment of feed rates

Handling modules, Linear slides, Automatic machinery, Conveyor equipment

MA, MVC Page 230

Adjustable

Designed for applications with low precision requirements

Handling modules, Linear slides, Automatic machinery,

Conveyor equipment

Shorter processing times

Different feed rates

Adjustment segment at the lower end of the feed control

Most accurate calibrations

Available immediately

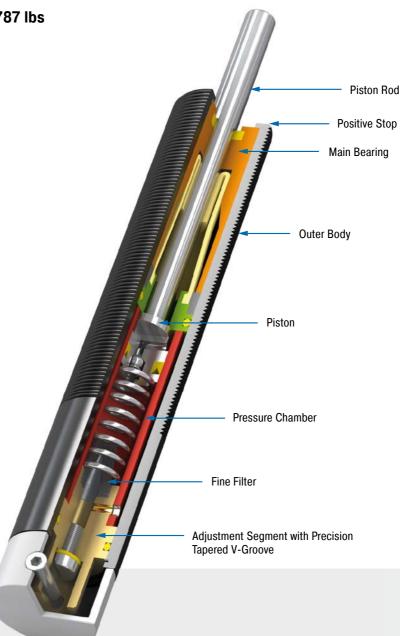
Easy to mount

Issue 04.2018 – Specifications subject to change

VC25

For precision adjustment of feed rates

Adjustable


Compression force 6.74 lbs to 787 lbs

Stroke 0.59 in to 4.92 in

Precise adjustment for any type of application: Hydraulic feed controls of the product family VC are ideally suited for the precise tuning of constant feed rates. The thread of the outer body of this closed hydraulic element allows simple assembly. Smooth outer bodies can also be supplied.

As the hydraulic oil is forced out through the throttle opening, a constant feed rate is achieved on the stroke. In the models up to 2.17" (55 mm) stroke, the tried and tested rolling diaphragm, known from ACE shock absorbers, serves as a dynamic seal, as volume compensation of the piston rod and as a reset element.

Precision hydraulic feed controls of the product family VC are used in automotive and industrial applications as well as in mechanical engineering and the electronics industry.

Technical Data

Compression force: 6.74 lbs to 787 lbs **Execution:** $F = \emptyset$ 0.94 in without thread

FT = M25x1.5 threaded body

Piston rod diameter: Ø 0.31 in

Feed rate/Compression force:

Min. 0.51 in/min. with 90 lbs;

Max. 1,500 in/min. with 787 lbs

Impact velocity range: At speeds of 0.98 ft/sec the maximum allowed energy is approx. 8.85 in-lbs for units up to 2.16 in stroke and approx. 17.70 in-lbs for units 2.95 in to 4.92 in stroke. Where higher energies occur use a shock absorber for the initial impact. Avoid high impact velocities.

Adjustment: Infinitely adjustable

Positive stop: External positive stops 0.04 in to 0.06 in before the end of stroke provided by the customer.

Damping medium: Oil, temperature stable **Material:** Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; Accessories: Steel with black oxide

finish or nitride hardened

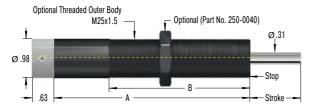
Mounting: In any position

Operating temperature range: 32 °F to

140 °F

Application field: Handling modules, Linear slides, Automatic machinery, Conveyor equipment, Absorption control

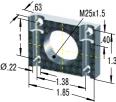
Note: Nylon button can be fitted onto piston rod. Unit may be mounted in any position.

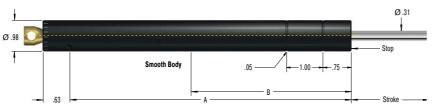

Safety information: Do not rotate piston rod, if excessive rotation force is applied rolling seal may rupture. External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions.

On request: Special oil and other special options available on request.

Adjustable

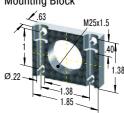
VC25FT


SP25 Air Bleed Collar


For VC2515FT to VC2555FT reduction of the stroke 0.25 inch

250-0044

VC25F



SP25 Air Bleed Collar

For VC2515FT to VC2555FT reduction of the stroke 0.25 inch

250-0044 Mounting Block

Additional accessories, mounting, installation ... see from page 47.

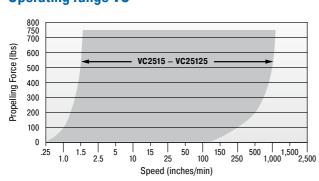
Complete details required when ordering

Load to be decelerated: W (lbs) Impact velocity: v (ft/s) Propelling force: F (lbs)

Operating cycles per hour: c (/hr) Number of absorbers in parallel: n

Ambient temperature: °F

Ordering	Example


Ordering Example	VC2555FT
Type (Feed Control)	
25 for Thread Size M25	
Stroke 2.16" (55 mm)	
FT = with thread M25x1.5	

F = without thread, plain body (Ø 0.94" / 23.8 mm)

Performance	ce and Dime	ensions								
				Compression	Compression	Return Force	Return Force		Side Load Angle	
	Stroke	Α	В	force min.	force max.	min.	max.	Return Time	max.	Weight
TYPES	inch	inch	inch	lbs	lbs	lbs	lbs	s	۰	lbs
VC2515FT	0.59	5.04	3.15	6.74	787	3.37	6.74	0.2	3	0.529
VC2530FT	1.18	6.34	4.33	6.74	787	1.12	6.74	0.4	2	0.617
VC2555FT	2.16	8.23	5.19	7.87	787	1.12	8.99	1.2	2	0.926
VC2575FT	2.95	11.14	5.90	11.24	787	2.25	11.24	1.7	2	1.058
VC25100FT	3.94	12.13	5.90	13.49	787	2.25	11.24	2.3	1	1.103
VC25125FT	4.92	13.13	5.90	15.74	787	2.25	13.49	2.8	1	1.191
VC2515F	0.59	5.04	3.15	6.74	787	3.37	6.74	0.2	3	0.529
VC2530F	1.18	6.34	4.33	6.74	787	1.12	6.74	0.4	2	0.617
VC2555F	2.16	8.23	5.19	7.87	787	1.12	8.99	1.2	2	0.926
VC2575F	2.95	11.14	5.90	11.24	787	2.25	11.24	1.7	2	1.058
VC25100F	3.94	12.13	5.90	13.49	787	2.25	11.24	2.3	1	1.103
VC25125F	4.92	13.13	5.90	15.74	787	2.25	13.49	2.8	1	1.191

Suffix FT: M25x1.5 threaded body.
Suffix F: plain body 23.8 mm dia. (without thread), with optional clamp type mounting block.

Operating range VC

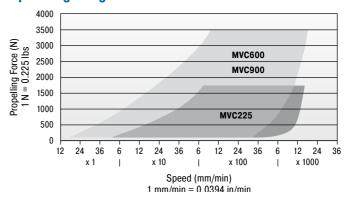
Accessories with Mounting Example

Mounting with clamp mount

Installed with air bleed collar SP25 (part no. 10783-000)

MA, MVC

Designed for applications with low precision requirements


Adjustable Compression force 2 lbs to 800 lbs Stroke 0.28 in to 1.58 in

Many application options: the hydraulic feed controls in models MA and MVC are similar to that of the VC model. However, these hydraulic controls have been designed for applications that require less precision.

There are also plenty of accessories for the MA and MVC models. All products are ready-to-install, maintenance-free, stable in temperature and avoid stick-slip effect. Speeds from 0.47"/min. (12 mm/min.) can be driven at a low thrust force using the adjustment screw on the base of the hydraulic control.

Hydraulic feed controls with the designations MA and MVC are especially used in handling modules or linear carriages and also for applications with changing usage data.

Operating Range MVC225 to MVC900

Performanc	e and Dimens	ions							
TYPES	Stroke inch	Compression force min. lbs	Compression force max.	Return Force min. Ibs	Return Force max. Ibs	Return Time s	¹ Side Load Angle max.	М	Weight Ibs
MA30M	0.32	2	18	1.16	1.57	0.3	2	M8x1	0.029
MA50M	0.28	9	36	0.47	1.80	0.3	2	M10x1	0.055
MA35	0.40	3.3	45	1.20	2.60	0.2	2	1/2-20 UNF / M12x1	0.095
MA150	0.50	4.5	67.4	0.70	1.20	0.4	2	9/16-18 UNF / M14x1.5	0.135
MVC225	0.75	5	400	1.05	2.15	0.65	2	3/4-16 UNF / M20x1.5	0.381
MVC600	1.00	14	800	2.40	6.87	0.85	2	1-12 UNF / M25x1.5	0.776
MVC900	1.58	15	800	2.40	7.40	0.95	2	1-12 UNF / M25x1.5	0.913

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

Technical Data

Compression force: 2 lbs to 800 lbs **Execution:** Thread M8 to M25

Impact velocity range: At speeds of 0.98 ft/sec the maximum allowed energy is approx. 17.70 in-lbs. Where higher energies occur use a shock absorber for the initial impact. Avoid high impact velocities.

Adjustment: Hard impact at the start of stroke, turn towards 9 or PLUS. Hard impact at the end of stroke, turn towards 0 or MINUS.

Positive stop: Integrated

Damping medium: Oil, temperature stable

Material: Outer body: Nitride hardened steel; Piston rod: Steel with black oxide finish or

nitride hardened

Mounting: In any position

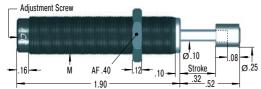
Operating temperature range: 32 °F to

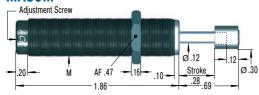
150 °I

Application field: Handling modules, Linear slides, Automatic machinery, Conveyor equipment, Absorption control

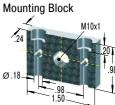
Note: Damper is preset at delivery in a neutral position between hard and soft.

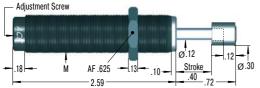
Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions


On request: Nickel-plated, weartec finish (seawater resistant) or other special options available on request.

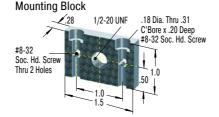

Products for UNF and metric thread available

Adjustable

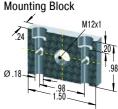



MA50M

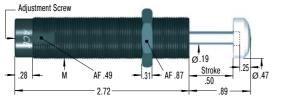
250-0307 Mounting Bloc



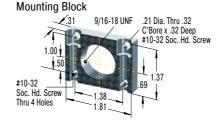
MA35



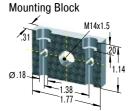
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0308

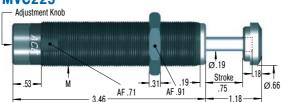
250-0309



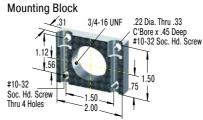
MA150



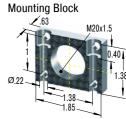
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0318

250-0352



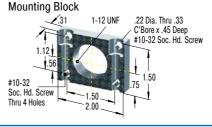
MVC225



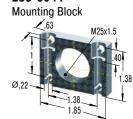
Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0401

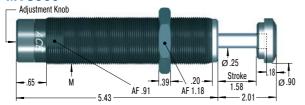
250-0353



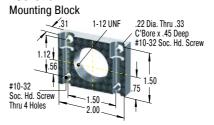
MVC600



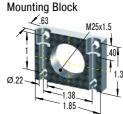
Product available for UNF and metric thread (for metric add suffix -M from part number)


250-0402

250-0044



MVC900

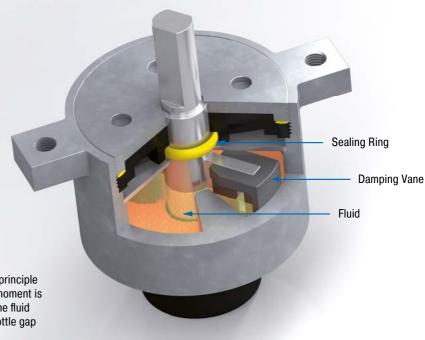


Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0402

250-0044

Additional accessories, mounting, installation ... see from page 44.


Rotary Dampers

Small dampers refine your design

ACE rotary dampers provide an invisible yet valuable service as a maintenance-free machine element to allow controlled deceleration of rotary or linear movements.

They are often necessary to make careful opening and closing of small lids, compartments and drawers possible. They protect sensitive components while increasing the quality and value of products. They are easy to integrate. The harmoniously gentle movements of these little decelerators can be achieved with continual rotation or with limited pivoting angles. They slow down left, right or bi-directional rotation. Suitable for almost any application and also available in adjustable variations, they provide braking torques of 0.44 in-lbs to 354 in-lbs.

Partial Rotation Angle, Adjustable e.g. FYT-H1 and FYN-H1

General Function

Rotary dampers operate on the principle of fluid damping. The damping moment is determined by the viscosity of the fluid and the dimensioning of the throttle gap or throttle orifices.

Rotary Dampers with Continuous Rotation

Rotate for the plus in quality: For smooth, quiet movements of small hoods, flaps and fans these continuously rotating rotary dampers from ACE decelerate either right, left or two-sided rotation right in the pivot point or linear through a gear and gear rack. The harmoniously gentle process protects components and increases the quality and value of products. The maintenance-free, ready-to-install ACE rotary dampers are filled with an inert fluid, usually silicone oil. The viscosity of the fluid and the sizing of the throttling gap determine the damping torque. The FFD series is the only exception: These fluid-free rotary dampers operate according to the principle of friction.

The continuously rotating rotary dampers with the designations FRT, FRN, FFD, FDT and FDN are used in household and medical devices as well as in the automotive, electronics and furniture industries.

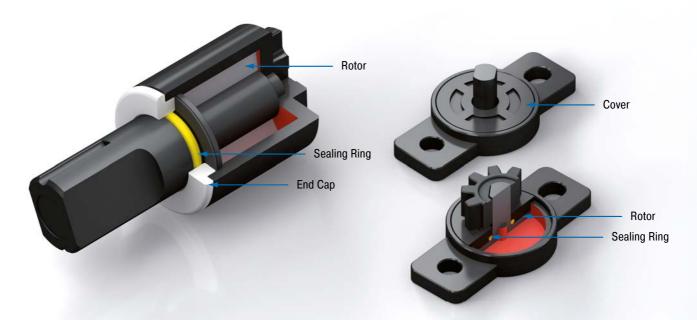
Rotary Dampers with Partial Rotation Angle

For controlled and gentle deceleration: The damping direction of this rotary damper, which is available with adjustable damping torque, can be right, left or two-sided rotation. They can be installed directly in the pivot point of a construction and achieve uniform, quiet movements, which increases quality and value and protects sensitive components. The products are maintenance-free, ready-to-install and filled with an inert fluid, usually silicone oil. A rotor movement presses the fluid from one chamber into the other. The damping torque is determined by the viscosity of the fluid and the sizing of the throttling gap the throttle holes. During each reversal of movement, depending on the frame size a certain return damping torque develops.

These solutions are used in the automotive sector, in many industrial applications, in the electronics and furniture industries as well as in medical devices.

High protection of sensitive components

Various designs for every application

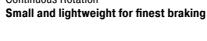

Maintenance-free and ready-to-install

Partial Rotation Angle

e.g. FYN-N1

Continuous Rotation

e.g. FRT-E2



Rotary Dampers

Continuous rotation

FRT-E2
Continuous Rotation

FRT-G2 Page 237

Continuous Rotation

Small and lightweight for finest braking

FRT-C2 and FRN-C2 Page 238

Continuous Rotation
Flexible and cost efficient use

FRT-D2 and FRN-D2 Page 239

Continuous Rotation
Flexible and cost efficient use

FRT-F2/K2 and FRN-F2/K2 Page 240

Continuous Rotation
For a long service life

FFD Page 241

Continuous Rotation
Precise braking without oil

FDT Page 242

Continuous Rotation

The flat disc brake for two-sided damping

FDN Page 243

Continuous Rotation

The flat disc brake for one direction of rotation

Rotary Dampers

Partial rotation angle

FYN-P1 Page 244
Partial Rotation Angle

Small diameter, large damping torques

FYN-N1 Page 245

Partial Rotation Angle
Small diameter, large damping torques

FYN-U1 Page 246

Partial Rotation Angle **Small, strong and very robust**

FYN-S1 Page 247

Partial Rotation Angle

The flat damper for constant component protection

Partial rotation angle, adjustable

Specifically adjustable, strong braking force

FYT-H1 and FYN-H1 Page 248
Partial Rotation Angle, Adjustable

FYT-LA3 and FYN-LA3 Page 249

Partial Rotation Angle, Adjustable Adjustable high performance

FRT-E2

Small and lightweight for finest braking

Continuous Rotation Damping torque 0.009 in-lbs to 0.035 in-lbs

The damping direction of the smallest ACE FRT-E2 rotary dampers with plastic body is rotating on both sides. They can brake directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.39 in Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 32 °F to 122 °F

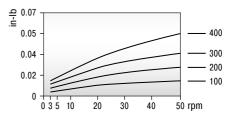
Pressure angle: 20°

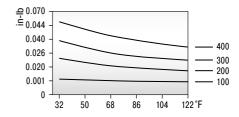
Material: Outer body, Shaft, Gear: Plastic

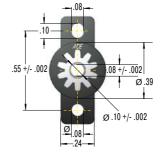
Mounting: In any position **Tooth:** Involute gearing

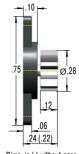
P.C.D.: 0.24 in **No. of teeth:** 10 **Module:** 0.6

Mounting information: No axial or radial forces may be induced via


the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.


On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.


Characteristics

At 73 °F ambient temperature

Dims. in () without gear

Performance				
TYPES	¹ Damping torque in-lbs	Damping direction	Gear	Weight Ibs
FRT-E2-100	0.009 +/- 0.004	bidirectional	without	0.00071
FRT-E2-200	0.018 +/- 0.006	bidirectional	without	0.00071
FRT-E2-300	0.026 +/- 0.007	bidirectional	without	0.00071
FRT-E2-400	0.035 +/- 0.009	bidirectional	without	0.00071
FRT-E2-100-G1	0.009 +/- 0.004	bidirectional	with	0.00090
FRT-E2-200-G1	0.018 +/- 0.006	bidirectional	with	0.00090
FRT-E2-300-G1	0.026 +/- 0.007	bidirectional	with	0.00090
FRT-E2-400-G1	0.035 +/- 0.009	bidirectional	with	0.00090

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FRT-G2

Small and lightweight for finest braking

Continuous Rotation Damping torque 0.018 in-lbs to 0.088 in-lbs

The damping direction of the ACE FRT-G2 product family with plastic body is rotating on both sides. The small rotary dampers can brake directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.59 in Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 32 °F to 122 °F

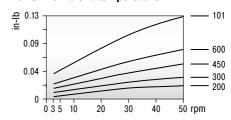
Pressure angle: 20°

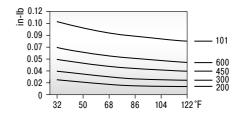
Material: Outer body, Shaft, Gear: Plastic

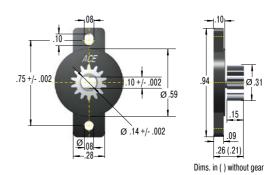
Mounting: In any position **Tooth:** Involute gearing

P.C.D.: 0.28 in **No. of teeth:** 14 **Module:** 0.5

Mounting information: No axial or radial forces may be induced via


the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.


On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.

Characteristics

At 73 °F ambient temperature

Performance				
TYPES	¹ Damping torque in-lbs	Damping direction	Gear	Weight Ibs
FRT-G2-200	0.018 +/- 0.006	bidirectional	without	0.00132
FRT-G2-300	0.026 +/- 0.007	bidirectional	without	0.00132
FRT-G2-450	0.041 +/- 0.009	bidirectional	without	0.00132
FRT-G2-600	0.053 +/- 0.011	bidirectional	without	0.00132
FRT-G2-101	0.088 +/- 0.018	bidirectional	without	0.00132
FRT-G2-200-G1	0.018 +/- 0.006	bidirectional	with	0.00176
FRT-G2-300-G1	0.027 +/- 0.007	bidirectional	with	0.00176
FRT-G2-450-G1	0.041 +/- 0.009	bidirectional	with	0.00176
FRT-G2-600-G1	0.053 +/- 0.011	bidirectional	with	0.00176
FRT-G2-101-G1	0.088 +/- 0.018	bidirectional	with	0.00176

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FRT-C2 and FRN-C2

Flexible and cost efficient use

Continuous Rotation Damping torque 0.18 in-lbs to 0.27 in-lbs

The damping direction of the simple FRT-C2 and FRN-C2 is either right, left or two-sided rotation. These ACE rotary dampers with plastic body can decelerate directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Construction size: Ø 0.59 in Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 32 °F to 122 °F

Pressure angle: 20°

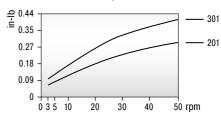
Material: Outer body, Gear: Plastic; Shaft: Plastic, steel

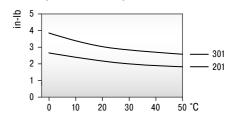
Mounting: In any position **Tooth:** Involute gearing **P.C.D.:** 0.35 in

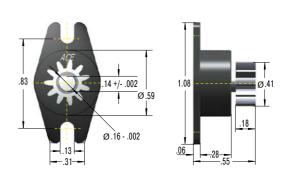
No. of teeth: 11 Module: 0.8

Mounting information: No axial or radial forces may be induced via

the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.


On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.



Characteristics

At 73 °F ambient temperature

Performance				
TYPES	¹ Damping torque in-lbs	Damping direction	Gear	Weight Ibs
FRT-C2-201	0.18 +/- 0.05	bidirectional	without	0.005
FRT-C2-301	0.27 +/- 0.07	bidirectional	without	0.005
FRT-C2-201-G1	0.18 +/- 0.05	bidirectional	with	0.005
FRT-C2-301-G1	0.27 +/- 0.07	bidirectional	with	0.005
FRN-C2-R201	0.18 +/- 0.05	right	without	0.004
FRN-C2-R301	0.27 +/- 0.07	right	without	0.004
FRN-C2-R201-G1	0.18 +/- 0.05	right	with	0.004
FRN-C2-R301-G1	0.27 +/- 0.07	right	with	0.004
FRN-C2-L201	0.18 +/- 0.05	left	without	0.004
FRN-C2-L301	0.27 +/- 0.07	left	without	0.004
FRN-C2-L201-G1	0.18 +/- 0.05	left	with	0.004
FRN-C2-L301-G1	0.27 +/- 0.07	left	with	0.004

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FRT-D2 and FRN-D2

Flexible and cost efficient use

Continuous Rotation Damping torque 0.44 in-lbs to 2.21 in-lbs

The damping direction of the ACE FRT-D2 and FRN-D2 rotary dampers with plastic body is either the right, left or two-sided rotation. They can decelerate directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Construction size: \emptyset 1 in Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 32 °F to 122 °F

Pressure angle: 20°

Material: Outer body, Gear: Plastic; Shaft: Plastic, steel

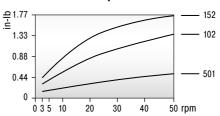
Mounting: In any position

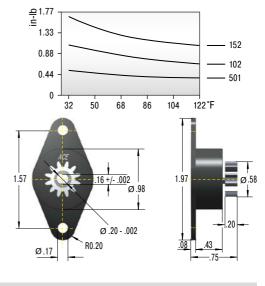
Tooth: Involute gearing (addendum modification coefficient: +0.375)

P.C.D.: 0.47 in No. of teeth: 12 Module: 1

Mounting information: No axial or radial forces may be induced via

the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.


On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.

Characteristics

At 73 °F ambient temperature

Performance				
TYPES	¹ Damping torque in-lbs	Damping direction	Gear	Weight Ibs
FRT-D2-102	0.88 +/- 0.18	bidirectional	without	0.018
FRT-D2-152	1.33 +/- 0.26	bidirectional	without	0.018
FRT-D2-501	0.44 +/- 0.09	bidirectional	without	0.018
FRT-D2-102-G1	0.88 +/- 0.18	bidirectional	with	0.019
FRT-D2-152-G1	1.33 +/- 0.26	bidirectional	with	0.019
FRT-D2-501-G1	0.44 +/- 0.09	bidirectional	with	0.019
FRN-D2-R102	0.88 +/- 0.18	right	without	0.026
FRN-D2-R152	1.33 +/- 0.26	right	without	0.026
FRN-D2-R501	0.44 +/- 0.09	right	without	0.026
FRN-D2-R102-G1	0.88 +/- 0.18	right	with	0.028
FRN-D2-R152-G1	1.33 +/- 0.26	right	with	0.028
FRN-D2-R501-G1	0.44 +/- 0.09	right	with	0.028
FRN-D2-L102	0.88 +/- 0.18	left	without	0.026
FRN-D2-L152	1.33 +/- 0.26	left	without	0.026
FRN-D2-L501	0.44 +/- 0.09	left	without	0.026
FRN-D2-L102-G1	0.88 +/- 0.18	left	with	0.028
FRN-D2-L152-G1	1.33 +/- 0.26	left	with	0.028
FRN-D2-L501-G1	0.44 +/- 0.09	left	with	0.028

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FRT-F2/K2 and FRN-F2/K2

For a long service life

Continuous Rotation Damping torque 4.42 in-lbs to 26.55 in-lbs

The damping direction of FRT F2/K2 and FRN-F2/K2 is either the right, left or two-sided rotation. With a damping torque of up to 35.4 in-lbs, this product family can even handle heavy components. These ACE rotary dampers can decelerate directly in the pivot point or linear through a gear and gear rack. They are maintenance-free and readyto-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

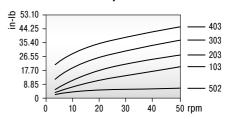
Construction size: Ø 1.57 in-lbs Rotational speed max.: 50 rpm

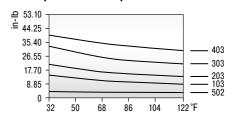
Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

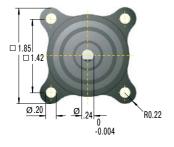
Operating temperature range: 32 °F to 122 °F Material: Outer body: Plastic; Shaft: Steel

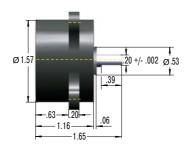
Mounting: In any position

Mounting information: No axial or radial forces may be induced via


Safety information: Do not use rotary dampers as supports. Provide


an external guide or support.


On request: Special designs available on request.


Characteristics

At 73 °F ambient temperature

Performance			
	¹ Damping torque	Damping direction	Weight
TYPES	in-lbs		lbs
FRT-K2-502	4.42 +/- 0.88	bidirectional	0.176
FRT-K2-103	8.85 +/- 1.77	bidirectional	0.176
FRT-F2-203	17.70 +/- 3.54	bidirectional	0.254
FRT-F2-303	26.55 +/- 7.08	bidirectional	0.254
FRT-F2-403	35.40 +/- 8.85	bidirectional	0.254
FRN-K2-R502	4.42 +/- 0.88	right	0.126
FRN-K2-R103	8.85 +/- 1.77	right	0.126
FRN-F2-R203	17.70 +/- 3.54	right	0.198
FRN-K2-L502	4.42 +/- 0.88	left	0.126
FRN-K2-L103	8.85 +/- 1.77	left	0.126
FRN-F2-L203	17.70 +/- 3.54	left	0.198

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FFD

Precise braking without oil

Continuous Rotation Damping torque 0.89 in-lbs to 26.55 in-lbs

In comparison to other rotary dampers, the ACE FFD product family does not need any fluid to generate the damping torque, but rather works on the principle of friction. That means temperature or speed changes have virtually no influence on the damping torque. The FFD is available in two different body variants and two types of bearings. ACE rotary dampers are maintenance-free and ready-to-install.

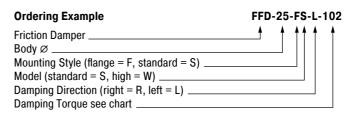
Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.98 in to 1.18 in Rotational speed max.: 30 rpm

Lifetime: 30,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 14 °F to 140 °F


Material: Outer body: Plastic **Mounting:** In any position

Information to the shaft: Ø +0 / -0.001 Hardness > HRC55, surface smoothness R_z < 1 μ m

Mounting information: Turn the shaft in the opposite direction to the brake direction to avoid damaging the freewheel mount. No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Complete details required when ordering

Damping torque 102 = 0.89 lbs Damping torque 502 = 4.43 lbs Damping torque 103 = 8.85 lbs Damping torque 153 = 13.28 lbs Damping torque 203 = 17.70 lbs Damping torque 253 = 22.13 lbs Damping torque 303 = 26.55 lbs Note dimension C.

Model Type Prefix

FS = Mounting Style with Flange, Model standard

FW = Mounting Style with Flange, Model high

SS = Mounting Style Standard, Model standard

SW = Mounting Style Standard, Model high

Combinations with W for higher damping torque.

Ø B B B B B B B B B B B B B B B B B B B	Thickness 0.16 in
Flange Type	Standard Type

Performance and Dimensions														
	¹ Damping torque	Damping direction	Model	Α	В	С	D	Е	F	G	Н	I	J	Weight
TYPES	in-lbs			inch	lbs									
FFD-25SS	0.88/4.42/8.85	right or left	SS	0.98	0.24	0.51	0.12	1.65	1.34	0.83	0.24	0.63	0.15	0.026
FFD-28SS	0.88/4.42/8.85	right or left	SS	1.10	0.31	0.51	0.12	1.65	1.42	0.94	0.32	0.63	0.15	0.031
FFD-30SS	0.88/4.42/8.85/13.27	right or left	SS	1.18	0.39	0.51	0.12	1.81	1.5	1.02	0.4	0.63	0.15	0.035
FFD-25FS	0.88/4.42/8.85	right or left	FS	0.98	0.24	0.51	0.12	1.65	1.34	0.83	0.24	0.63	0.15	0.029
FFD-28FS	0.88/4.42/8.85	right or left	FS	1.10	0.31	0.75	0.12	1.65	1.42	0.94	0.32	0.63	0.15	0.031
FFD-30FS	0.88/4.42/8.85/13.27	right or left	FS	1.18	0.39	0.51	0.12	1.81	1.5	1.02	0.4	0.63	0.15	0.037
FFD-25SW	8.85/13.27/17.70	right or left	SW	0.98	0.24	0.75	0.12	1.65	1.34	0.83	0.24	0.87	0.15	0.051
FFD-28SW	8.85/13.27/17.70	right or left	SW	1.10	0.31	0.75	0.12	1.65	1.42	0.94	0.32	0.87	0.15	0.055
FFD-30SW	13.27/17.70/22.13/26.55	right or left	SW	1.18	0.39	0.75	0.12	1.81	1.5	1.02	0.4	0.87	0.15	0.066
FFD-25FW	8.85/13.27/17.70	right or left	FW	0.98	0.24	0.75	0.12	1.65	1.34	0.83	0.24	0.87	0.15	0.053
FFD-28FW	8.85/13.27/17.70	right or left	FW	1.10	0.31	0.75	0.12	1.65	1.42	0.94	0.32	0.87	0.15	0.060
FFD-30FW	13.27/17.70/22.13/26.55	right or left	FW	1.18	0.39	0.75	0.12	1.81	1.5	1.02	0.4	0.87	0.15	0.068

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FDT

The flat disc brake for two-sided damping

Continuous Rotation Damping torque 4.43 in-lbs to 79.66 in-lbs

The damping direction of the flat constructive ACE rotary damper FDT with robust steel body is two-sided rotation. It can brake directly in the pivot point of the square receptacle. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 1.85 in-lbs to 2.76 in-lbs

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

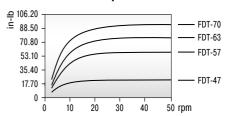
Operating temperature range: 14 °F to 140 °F

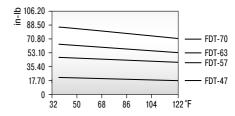
Material: Outer body: Steel; Output shaft sleeve: Nylon

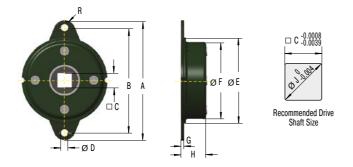
Mounting: In any position

Mounting information: No axial or radial forces may be induced via

the shaft.


Safety information: Do not use rotary dampers as supports. Provide


an external guide or support.


On request: Special designs available on request.

Characteristics

At 73 °F ambient temperature

Performan	Performance and Dimensions												
TYPES	¹ Damping torque in-lbs	Damping direction	A inch	B inch	C inch	D inch	E inch	F inch	G inch	H inch	R inch	J inch	Weight Ibs
FDT-47	17.70 +/- 2.66	bidirectional	2.55	2.20	0.31	0.18	1.85	1.68	0.06	0.40	4.5	0.40	0.110
FDT-57	41.60 +/- 4.43	bidirectional	3.11	2.68	0.40	0.22	2.24	2.06	0.06	0.44	5.5	0.50	0.165
FDT-63	59.30 +/- 6.20	bidirectional	3.50	3.00	0.49	0.25	2.48	2.30	0.06	0.44	6.5	0.67	0.209
FDT-70	77 +/- 7.08	bidirectional	3.74	3.23	0.49	0.25	2.76	2.57	0.06	0.44	6.5	0.67	0.243

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FDN

The flat disc brake for one direction of rotation

Continuous Rotation Damping torque 4.43 in-lbs to 97.36 in-lbs

The damping direction of the flat, strong FDN rotary dampers with steel body can be either right or left rotation. They can brake directly in the pivot point. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 1.85 in to 2.76 in Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 14 °F to 140 °F

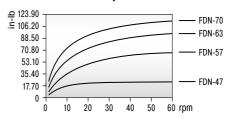
Material: Outer body: Steel ; Output shaft sleeve: nylon with metal

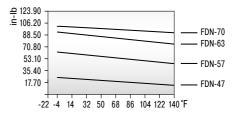
freewheel

Mounting: In any position **Information to the shaft:**

FDN-47: Ø 0.24 +0 / -0.001 FDN-57 to FDN-70: Ø 0.39 +0 / -0.001

Hardness > HRC55, surface smoothness $R_7 < 1 \mu m$


Mounting information: Turn the shaft in the opposite direction to the brake direction to avoid damaging the freewheel mount. No axial or radial forces may be induced via the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Characteristics

At 73 °F ambient temperature

Performance and Dimensions												
TYPES	¹ Damping torque in-lbs	Damping direction	A inch	B inch	C inch	D inch	E inch	F inch	G inch	H inch	R inch	Weight Ibs
FDN-47-R	17.70 +/- 2.66	right	2.56	2.20	0.24	0.18	1.85	1.68	0.06	0.40	0.18	0.119
FDN-57-R	48.68 +/- 2.66	right	3.11	2.70	0.40	0.22	2.24	2.06	0.06	0.55	0.22	0.209
FDN-63-R	75.23 +/- 7.08	right	3.50	3.00	0.40	0.25	2.48	2.30	0.06	0.55	0.26	0.254
FDN-70-R	97.36 +/- 8.85	right	3.74	3.23	0.40	0.25	2.76	2.57	0.06	0.51	0.26	0.298
FDN-47-L	17.70 +/- 2.66	left	2.56	2.20	0.24	0.18	1.85	1.68	0.06	0.41	0.18	0.119
FDN-57-L	48.68 +/- 2.66	left	3.11	2.70	0.40	0.22	2.24	2.06	0.06	0.55	0.22	0.209
FDN-63-L	75.23 +/- 7.08	left	3.50	3.00	0.40	0.25	2.48	2.30	0.06	0.55	0.26	0.254
FDN-70-L	97.36 +/- 8.85	left	3.74	3.23	0.40	0.25	2.76	2.57	0.06	0.51	0.26	0.298

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 73 °F.

FYN-P1

Small diameter, large damping torques

Partial Rotation Angle Damping torque 8.85 in-lbs to 15.93 in-lbs

The damping direction of the rotary damper FYN-P1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. Differentiation of the damping direction through the coloured shaft. ACE rotary dampers are maintenance-free and ready-to-install.

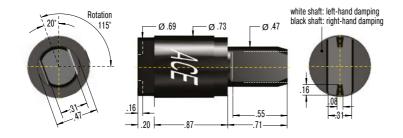
Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.73 in-lbs

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 23 °F to 122 °F


Material: Outer body, Shaft: Plastic

Mounting: In any position **Rotation angle max.:** 115°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

Performance				
TYPES	Damping torque in-lbs	Return Damping Torque in-lbs	Damping direction	Weight Ibs
FYN-P1-R103	8.85	2.65	right	0.023
FYN-P1-R153	13.27	4.42	right	0.023
FYN-P1-R183	15.93	7.08	right	0.023
FYN-P1-L103	8.85	2.65	left	0.023
FYN-P1-L153	13.27	4.42	left	0.023
FYN-P1-L183	15.93	7.08	left	0.023

FYN-N1

Small diameter, large damping torques

Partial Rotation Angle Damping torque 8.85 in-lbs to 26.55 in-lbs

The damping direction of the rotary damper FYN-N1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. Differentiation of the damping direction through coloured end cap. ACE rotary dampers are maintenance-free and ready-to-install.

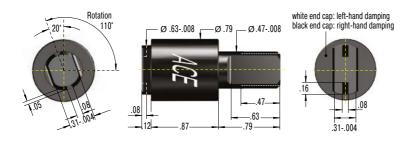
Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.79 in

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 23 °F to 122 °F


Material: Outer body, Shaft: Plastic

Mounting: In any position **Rotation angle max.:** 110°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

Performance				
TYPES	Damping torque in-lbs	Return Damping Torque in-lbs	Damping direction	Weight Ibs
FYN-N1-R103	8.85	1.77	right	0.026
FYN-N1-R203	17.70	3.54	right	0.026
FYN-N1-R253	22.13	3.54	right	0.026
FYN-N1-R303	26.55	7.08	right	0.026
FYN-N1-L103	8.85	1.77	left	0.026
FYN-N1-L203	17.70	3.54	left	0.026
FYN-N1-L253	22.13	3.54	left	0.026
FYN-N1-L303	26.55	7.08	left	0.026

FYN-U1

Small, strong and very robust

Partial Rotation Angle Damping torque 17.70 in-lbs to 26.55 in-lbs

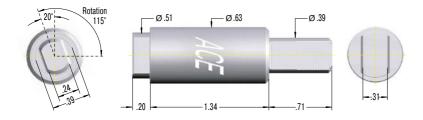
The damping direction of the rotary damper FYN-U1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. The body is made of especially robust die-cast zinc. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 0.63 in

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.


Operating temperature range: 23 °F to 122 °F **Material:** Outer body, Shaft: Zinc die-cast

Mounting: In any position **Rotation angle max.:** 115°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

Performance						
TYPES	Damping torque in-lbs	Return Damping Torque in-lbs	Damping direction	Weight Ibs		
FYN-U1-R203	17.70	3.54	right	0.088		
FYN-U1-R253	22.13	3.54	right	0.088		
FYN-U1-R303	26.55	7.08	right	0.088		
FYN-U1-L203	17.70	3.54	left	0.088		
FYN-U1-L253	22.13	3.54	left	0.088		
FYN-U1-L303	26.55	7.08	left	0.088		

FYN-S1

The flat damper for constant component protection

Partial Rotation Angle Damping torque 44.25 in-lbs to 88.51 in-lbs

The self-compensating FYN-S1 rotary damper with zinc die-cast body provides a constant sequence of movement for different masses. The damping direction can be either right or left rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. ACE rotary dampers are maintenance-free and ready-to-install.

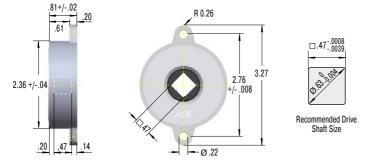
Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 2.36 in

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 23 °F to 122 °F


Material: Outer body: Zinc die-cast; Output shaft sleeve: Plastic

Mounting: In any position **Rotation angle max.:** 130°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

Performance				
TYPES	Damping torque in-lbs	Return Damping Torque in-lbs	Damping direction	Weight Ibs
FYN-S1-R104	44.25 - 88.51	13.28	right	0.485
FYN-S1-L104	44.25 - 88.51	13.28	left	0.485

FYT-H1 and FYN-H1

Specifically adjustable, strong braking force

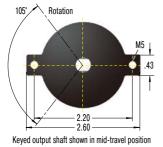
Partial Rotation Angle, Adjustable Damping torque 77.70 in-lbs to 88.51 in-lbs

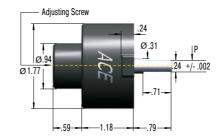
The damping direction of the adjustable FYT-H1 and FYT-H1 can be right, left or two-sided rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. The brakes have a particularly robust zinc die-cast body and shafts made of steel. ACE rotary dampers are maintenance-free and ready-to-install.

Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 1.75 in


Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.


Operating temperature range: 23 °F to 122 °F **Material:** Outer body: Zinc die-cast; Shaft: Steel

Mounting: In any position Rotation angle max.: 105° Maximum side load: 11.24 lb

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

Performance				
	Damping torque	Return Damping Torque	Damping direction	Weight
TYPES	in-lbs	in-lbs		lbs
FYT-H1	17.70 - 88.51	4.43	bidirectional	0.516
FYN-H1-R	17.70 - 88.51	4.43	right	0.516
FYN-H1-L	17.70 - 88.51	4.43	left	0.516

FYT-LA3 and FYN-LA3

Adjustable high performance

Partial Rotation Angle, Adjustable Damping torque 35.40 in-lbs to 354.04 in-lbs

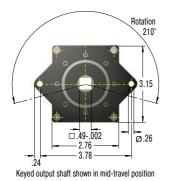
The damping direction of this adjustable high-performance rotary damper can be right, left or two-sided rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. The brakes have a particularly robust zinc die-cast body and shafts made of steel. ACE rotary dampers are maintenance-free and ready-to-install.

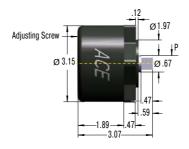
Rotary damper products are built to metric specifications. For precise measurements, please refer to the ACE rotary damper catalog or contact an application expert.

Technical Data

Construction size: Ø 3.15 in

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.


Operating temperature range: 23 °F to 122 °F **Material:** Outer body: Zinc die-cast; Shaft: Steel


Mounting: In any position Rotation angle max.: 210° Maximum side load: 45 lb

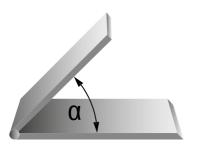
Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Issue 04.2018 - Specifications subject to change

Performance				
	Damping torque	Return Damping Torque	Damping direction	Weight
TYPES	in-lbs	in-lbs		lbs
FYT-LA3	35.40 - 354.04	35.40	bidirectional	3.793
FYN-LA3-R	35.40 - 354.04	35.40	right	3.809
FYN-LA3-L	35.40 - 354.04	35.40	left	3.809


Calculations and Accessories

Calculation Example

Damping of a Lid

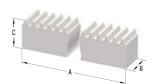
To select an appropriate rotary damper for the adjacent calculation example, the length and the weight or the center of gravity of the flap have to be known. After determining the value of the max. torque at an unfavorable angle of the flap, select the appropriate damper.

Calculation Steps

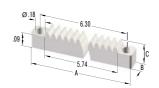
- 1. Calculate max. torque damper will be exposed to (with example shown on the left max. torque is at $\alpha=0^{\circ}$).
- 2. Decide upon rotation speed desired.
- 3. Choose a rotary damper that can handle the torque calculated above.
- With the aid of the damper performance curves, check if the r.p.m. given at your torque corresponds to the desired closing speed of the lid.
- 5. If the r.p.m. is too high choose a damper with a higher torque rating.

If the r.p.m. is too low - choose a damper with a lower torque rating.

Closing Torque $T = L / 2 \cdot M \cdot g \cdot \cos \alpha$ (L / 2 = center of gravity)


- M Mass of a lid [lb]
- $\textbf{L} \ \ \text{Length of lid from pivot [in]}$
- n Rotation speed [r.p.m.]

Special Accessories


Toothed Racks for Rotary Dampers with Gear

Rotary dampers with gears are available in four standard modules which can be optionally supplied with plastic toothed racks as accessories.

M0.5, M0.6, M0.8, M1.0 Toothed Rack

M0.8P Toothed Rack

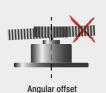
Delivery Notes

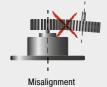
Delivery form: Toothed plastic racks with modules 0.5 to 1.0

availables ex stock


On request: Toothed metal racks

Dimensions


	Α	В	С	Model
TYPES	inch	inch	inch	
M0.5	9.84	0.16	0.18	rigid, milled
M0.6	9.84	0.16	0.24	rigid, milled
M0.8	9.84	0.24	0.31	rigid, milled
M0.8P	6.69	0.31	0.16	flexible, milled
M1.0	9.84	0.35	0.35	rigid, milled
M1.0	19.69	0.39	0.39	rigid, milled


Mounting Information

The rotary axis, square receptacles or free-wheel receptacles are not designed for lateral loads. An external guide or bearing support is fundamentally recommended.

Application Examples

FDT

Finger protection when cutting bread

To exclude the possibility of injury when using bread slicing machines on self-service counters, the automatic bread slicing process does not start until the flap of the modern machine is closed. To simplify the operation and to thereby increase acceptance of the self-slicing principle among users, two-way rotary dampers of the type FDT-57 ensure smooth opening and closing of the door. Even when rotary dampers must act only in one direction, ACE has appropriate variants readily available.

Protective flaps secured with rotary dampers: the simple operation of bread slicing machines can then be easily managed by hand Daub Bakery Machinery BV, 5050 AB Goirle, Netherlands

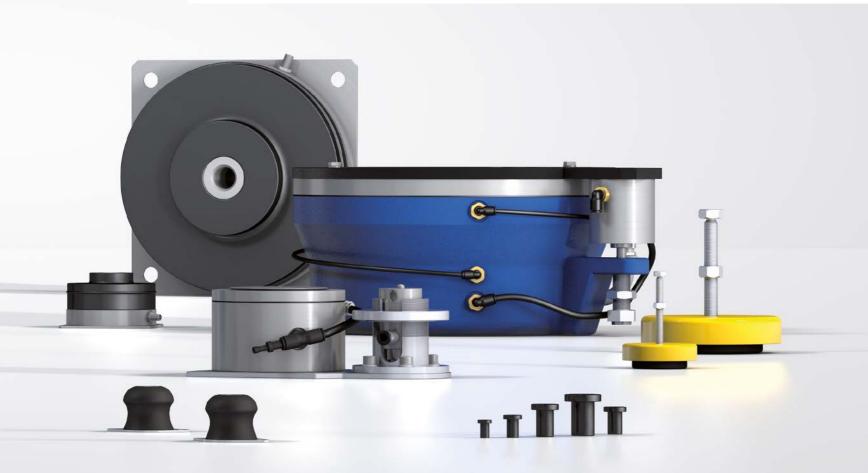
Invisible protection for cooker hoods

For ergonomic handling, modern cooker hoods can be driven by a motor into an up position and then down again. When driven downwards, an AC load can result in a total loss through current being fed back into the voltage source. One of the tasks of the FDN-63-R ACE rotary damper is to prevent this. The modern machine elements are also built to provide protection against motor failure. Sliding the hood down too quickly could lead to further costly damage to the hood and the ceiling console and even cause personal injury.

Rotary dampers in high-end cooker hoods safeguard the protection of drive units and protect chefs, even during power failures berbel Ablufttechnik GmbH, 48432 Rheine, Germany

Vibration Control

Vibration-Isolating Pads, Rubber-Metal Isolators Low Frequency Pneumatic Leveling Mounts



Isolate Unwanted Vibrations Effectively

Unique variety

This ACE product group includes innovative solutions to provide customers with the best assistance in isolation technology and vibration isolation. These machine elements are also distinguished by their light design and wide variety.

The product range extends from extremely low frequency isolating pneumatic leveling mounts to ready-to-install rubber-metal isolators and damping pads. With this portfolio, ACE is capable of offering you customized vibration isolation for almost any application.

Vibration Isolation

Noise reduction and vibration isolation are becoming more and more important in our daily lives. This applies in particular to the workplace and the environments around production companies.

Preventing noise emissions or harmful vibrations is not only a necessity required by noise protection and occupational health and safety legislation; their sources must also be localized by means of targeted analysis in order to develop suitable improvement measures for achieving increased production quality. A second by-product of vibrations are their effects on the surrounding production environment and any measuring and testing facilities that may be in use.

Advantages

- improved working conditions for people and the environment
- more accurate production tolerances and increased product quality
- competitive and cost advantages thanks to lower reject rate in production
- increased production speed thanks to increased maximum machine dynamics
- longer tool and machine life thanks to lower stress
- faster and more accurate measuring results

For detailed information, see Our ACEolator Catalog

Product Families

Rubber-Metal Isolators

Ready-to-install isolators for quick selection

Rubber-metal isolators and machine feet are supplied ready-to-install and are used in a large variety of vibration isolation applications. Common applications are engines, compressors, transfer systems, machines, fans and blowers.

LEV

Leveling Mounts (height-adjustable machine feet)

Secure, adjustable stabilization for all types of machines, transfer systems, assembly stations, etc.

CM

Cup Mounts (cup elements)

For isolating machinery and equipment. Fail-safe isolators for all axes in any installation position. Application examples: compressors, off-road vehicles, engines, fans, etc.

COM

Compression Mounts (pre-tensioned high-performance bearing surface)

Vertically acting isolators for machinery and equipment. Applications include: blowers, compressors, motors, generators, presses, etc.

AAM

All Attitude Mounts (vibration-isolating fasteners)

Maintenance free isolators for decoupling parts and components in electronics, aerospace, the military, medicine, transfer systems, etc.

SFM

Stable Flex Mounts (stable machine feet)

Extremely rugged and maintenance-free isolators, e.g. for marine applications, for diesel generators, in power generation or in off-road vehicles.

BM

Bubble Mounts (low-frequency vibration isolators)

For protecting small devices and electronic components, e.g. in medical technology, aerospace, electronic systems or computers.

UMO

Universal Mounts (universal connection isolators)

Maintenance-free connection isolators which can be implemented both radially and axially. Application examples: conveying systems, machinery and equipment, off-road, oil and gas industry, control systems, etc.

FL

Flex Locs (quick fastening elements)

Simple, efficient components with versatile applications as isolating fasteners for decoupling structure-borne sound in enclosures, housings, equipment and machinery. For application in mechanical engineering, in buildings, vehicles, or navigation.

Vibration-Isolating Pads

Customized insulation technology through cutting and combining

A wide range of applications such as machine foundations, supports, decoupling elements, pipelines and subsequently protected machines require tailor-made solutions. Here with its product range of vibration insulating pads ACE offers comprehensive possibilities for insulation. The products are manufactured and supplied either as standard pads or as drawing parts according to customer request.

SLAB

Universal Damping Pads

For application on foundations for plants and machines, compressors, in pump stations, generators, for insulations, measuring tables, buildings, etc.

CEL

Low-Frequency Damping Pads

For use in foundations, buildings, transport routes, bridges, stairs, test benches, pump stations, generators, compressors, machines, etc.

PAD

Rugged Fiber and Elastomer Pads

For isolating and protecting foundations, such as presses, plants, machines, as well as for use in pump stations, crane runways, bridges and heavy-duty applications

Application overview

Туре	Machines	Transfer systems	Construction Transport	Blower Fan	Foundations	Control units Electrical systems	Off-road vehicles	
Rubber-	Metal Isolators							
LEV								
СМ								
СОМ	•					•		
AAM								
SFM								
ВМ								
UMO	•	•				•		
FL								
Vibration	-Isolating Pads							
SLAB								
CEL								
PAD					•		•	
Air Sprin	g Elements							
PLM								
PAL								

Overview and Application Areas of Product Families

Low Frequency Pneumatic Leveling Mounts

Highly efficient insulation – it can hardly get any better

Everywhere perfect isolation of measuring tables, test equipment and high-performance machines are important the low frequency pneumatic leveling mounts PLM and PAL are a good choice. On request a detailed system analysis will be carried out at the customer and the perfect solution will be developed.

PLM

Pneumatic Air Spring Elements

For an efficient isolation of measuring equipment, high-speed presses and machines.

PAL-3 to PAL-9

Small Size Air Spring Elements

The perfect leveling and isolation system for smaller constructions that require precision and flexibility. Available in the system with many accessories.

PAL-18 to PAL-1000

Big Air Spring Elements with Automatic Level Controls

Isolation against disruptive vibrations and level-adjustment for test and measuring equipment. Isolating at extremely low-frequencies, these components are used in the automotive industry and in aerospace engineering.

More information about vibration control can be found in our special catalog and on our website www.acecontrols.com / Downloads

Туре	Test benches	Measuring tables	Medicine	Presses	Aerospace engineering	Oil and gas industry	Compressors	Engines Generators	
solators	ubber-Metal I	R							
LEV									
СМ									
COM							•		
AAM									
SFM							•		
ВМ									
UMO							•		
FL									
ing Pads	bration-Isolati	Vil							
SLAB									
CEL									
PAD									
lements	Air Spring E								
PLM									
PAL									

Safety Products

Safety Shock Absorbers, Safety Dampers
Clamping Elements

Protection for all machine designs under any condition

For any budget and all requirements

This ACE product group provides Emergency braking to safely slow down moving loads and reduce damaging forces. Although the safety shock absorbers, TUBUS elastomer bumpers and clamping elements differ so much in design, every single ACE component provides the best protection for your machine.

They demonstrate their main advantages in emergency stop situations and, based on the protection they provide, are very cost-effective. Furthermore, they can all be easily integrated into existing design and largely work independent of energy supplies.

Safety Shock Absorbers

Perfect protection for the worst case scenario

As an alternative to the standard shock absorber, Safety shock absorbers are the tried and tested low cost method of preventing those occasional emergency stops. Designed for occasional use, they primarily serve as reliable, effective protection in emergency stop situations.

The maintenance-free and ready-to-install machine elements are characterized in every respect by the well-known high ACE quality and maximum energy absorption of up to 4,250,000 in-lbs/Cycle. This means, in the product family SCS33 up to SCS64 a service life of up to 1,000 full load emergency cycles is achieved.

Safety Shock Absorbers

SCS33 to SCS64 Page 262

Self-Compensating or Optimized Characteristic
Industry design with high energy absorption

Finishing and processing centers, Conveyor systems, Portal systems, Test stations

SCS38 to SCS63 Page 266

High Rack Damper, Optimized Characteristic Low reaction forces with long strokes Shelf storage systems. Heavy load applications, Con

Shelf storage systems, Heavy load applications, Conveyor systems, Conveyor systems

CB63 to CB160 Page 270

Crane Installations, Optimized Characteristic

High resetting forces with gas pressure accumulator

Heavy load applications, Heavy load applications, Conveyor systems, Portal systems

EB63 to EB160 Page 272

Crane Installations, Optimized Characteristic

Low return force with spring assembly

Heavy load applications. Heavy load applications.

Heavy load applications, Heavy load applications, Conveyor systems, Portal systems

Top machine protection

Latest damping technology

Attractive cost-benefit ratio

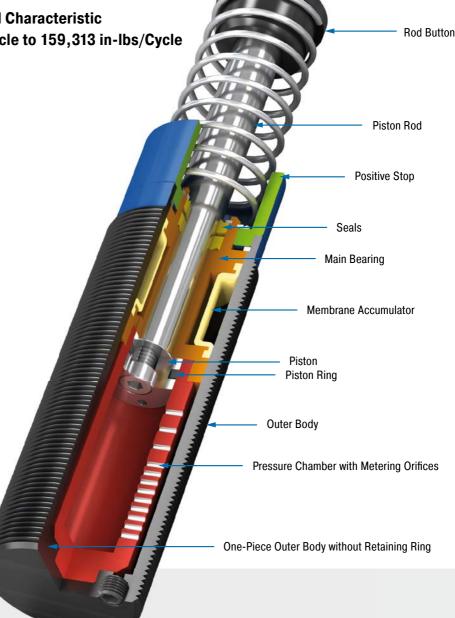
Maximum strokes

Wide application spectrum

Robust design

SCS33 to SCS64

Industry design with high energy absorption


Self-Compensating or Optimized Characteristic Energy capacity 2,744 in-lbs/Cycle to 159,313 in-lbs/Cycle

Stroke 0.91 in to 5.91 in

Effective emergency stop: the ACE safety shock absorbers from the SCS33 to SCS64 product family are based on the innovative technology of the successful MAGNUM range shock absorbers. They are also maintenance-free and ready-to-install.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. Due to the optimized characteristic curve for the respective application, the energy absorption of these hydraulic machine elements can be increased to more than twice the level of the MAGNUM model of ACE industrial shock absorber per stroke. Users benefit from a service life of up to 1,000 full load emergency cycles with a very good price-performance ratio. Their compact design in sizes M33x1.5 to M64x2 makes them easy to integrate into current applications.

These slimline, high-performance safety shock absorbers are only designed for emergency stop situations. They can be used for a number of tasks in gantries and conveyor systems, processing centres or assembly machines.

Technical Data

Energy capacity: 2,744 in-lbs/Cycle to

159,313 in-lbs/Cycle

Impact velocity range: 0.06 ft/sec to 16 ft/sec. Other speeds on request.

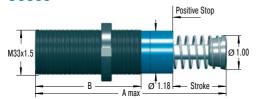
Operating temperature range: 10 °F to 158 °F. Other temperatures on request.

Mounting: In any position **Positive stop:** Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plastic-coated steel; Accessories: Steel corrosion-resistant coating

Damping medium: Automatic Transmission Fluid (ATF)

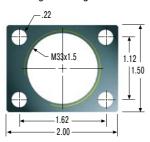
Application field: Finishing and processing centers, Conveyor systems, Portal systems, Test stations, Machines and plants, Swivel units, Cranes


Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

On request: Special oils, special flanges etc.

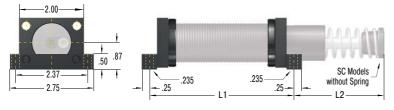
Self-Compensating or Optimized Characteristic

SCS33


The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Accessories

250-0292 Locking Ring


M33x1.5

250-0293 Rectangular Flange

250-0294

Side-Foot Mount Assembly

Dimensions	Dimensions								
	L1	L2							
TYPES	inch	inch							
MC, MA, ML3325	3.75	1.94							
MC, MA, ML3350	4.75	2.94							
SC3325	5.31	1.94							
SC3350	7.31	2.94							
SCS33-25	3.75	1.94							
SCS33-50	4.75	2.94							

250-0294 = 1 locknut, 2 flanges, 2 bars, 4 screws M6x40, DIN 912

Torque max.: 97 in-lbs Clamping torque: 797 in-lbs

Bolts to mount assembled shock & mount not included.

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

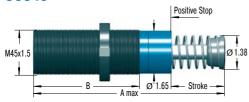
Issue 04.2018 - Specifications subject to change

Motor power: HP (horsepower)
Stall torque factor: ST (normal, 2.5)
(Alternatively: Propelling force F (lbs))
Number of absorbers in parallel: n

or technical data according to formulae and calculations on page 275.

Please indicate identification no. in case of replacement order

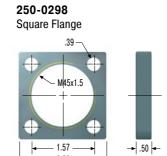
Please contact the factory for complete part number.


Performance and Dimensions Max. Energy Capacity Return Force Return Force 1 Side Load Angle E₃ Self-compensating E₃ Optimised min. max. Stroke A max. В max. Weight **TYPES** in-lbs/cycle in-lbs/cycle lbs lbs inch inch inch lbs SCS33-25 2,744 4,425 10.1 20.2 0.91 5.44 3.27 1.12 5,487 8,408 10.1 SCS33-50 30.3 1.91 7.44 4.25 1.39 2

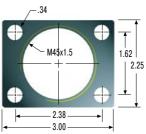
¹ The values are reduced by 20 % at max. side load angle.

Self-Compensating or Optimized Characteristic

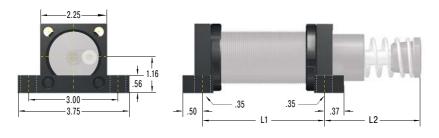
SCS45



The calculation and selection of the most suitable damper should be carried out or be approved by ACE.


Accessories

250-0297 Locking Ring M45x1.5



250-0299 Rectangular Flange

250-0300 Side-Foot Mount Assembly

Dimensions		
TVDEC	L1	L2
TYPES	inch	inch
MC, MA, ML4525	3.50	1.94
MC, MA, ML4550	4.38	3.06
MC, MA4575	5.38	4.06
SC4525	5.10	2.09
SC4550	7.10	3.09
SCS45-25	3.50	1.94
SCS45-50	4.38	3.06
SCS45-75	5.38	4.06

250-0300 = 1 locknut, 2 flanges, 2 bars, 4 screws M8x50, DIN 912

Torque max.: 239 in-lbs Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

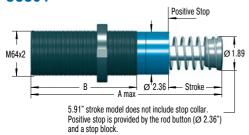
Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

or technical data according to formulae and calculations

on page 275.

Ordering Example	scs	45-50	-1xxxx
Safety Shock Absorber		1 1	†
Thread Size M45		」 │	
Max. Stroke without Positive Stop 1.97" (50 mm)			
Identification No. assigned by ACE			

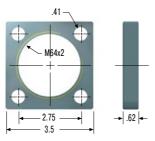
Please indicate identification no. in case of replacement order


Performanc	e and Dimensions								
	Max. Energy	Capacity							
			Return Force	Return Force				1 Side Load Angle	
	E ₃ Self-compensating	E ₃ Optimised	min.	max.	Stroke	A max.	В	max.	Weight
TYPES	in-lbs/cycle	in-lbs/cycle	lbs	lbs	inch	inch	inch	۰	lbs
SCS45-25	6,019	10,621	15.7	22.5	0.91	5.71	3.74	3	2.51
SCS45-50	12,037	20,799	15.7	32.6	1.91	7.68	4.72	2	3.00
SCS45-75	18 056	30.978	11.2	40.5	2.91	9 69	5.71	1	3 51

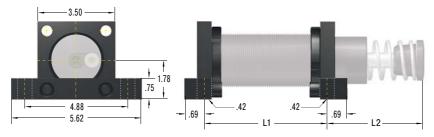
¹ The values are reduced by 20 % at max. side load angle.

Self-Compensating or Optimized Characteristic

SCS64


The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Accessories


250-0301 Locking Ring

250-0302 Square Flange

250-0304 Side-Foot Mount Assembly

Dimensions			
	L1	L2	
TYPES	inch	inch	
ML6425	4.00	2.54	
MC, MA, ML6450	5.00	3.54	
MC, MA64100	7.00	5.54	
MC, MA64150	9.00	8.42	
SCS64-50	5.00	3.54	
SCS64-100	7.00	5.54	
SCS64-150	9.00	8.42	

250-0304 = 1 locknut, 2 flanges, 2 bars, 4 screws M10x80, DIN 912

Torque max.: 443 in-lbs

Clamping torque: 3,098 in-lbs

Bolts to mount assembled shock & mount not included.

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

or technical data according to formulae and calculations on page 275.

Ordering Example	SC	S64-	50-	1xxxx
Safety Shock Absorber		1	1	1
Thread Size M64				
Max. Stroke without Positive Stop 1.97" (50 mm) _				
Identification No. assigned by ACE				

Please indicate identification no. in case of replacement order

Please contact the factory for complete part number.

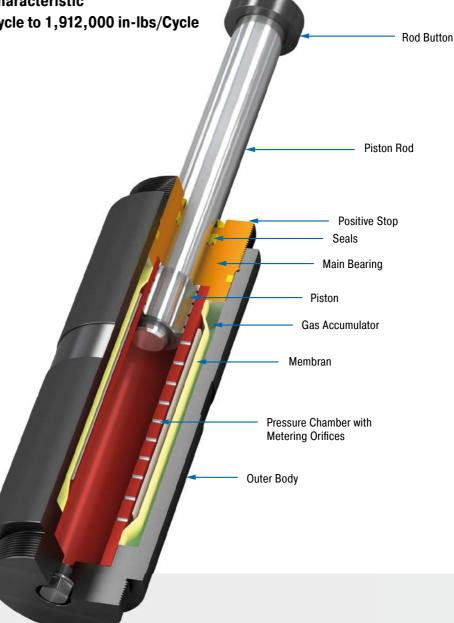
Performance and Dimensions

Issue 04.2018 - Specifications subject to change

	Max. Energy	Capacity							
			Return Force	Return Force				1 Side Load Angle	
	E ₃ Self-compensating	E ₃ Optimised	min.	max.	Stroke	A max.	В	max.	Weight
TYPES	in-lbs/cycle	in-lbs/cycle	lbs	lbs	inch	inch	inch	•	lbs
SCS64-50	30,093	53,104	20.2	34.8	1.91	8.86	5.51	3	6.39
SCS64-100	60,185	106,209	23.6	60.7	3.91	12.83	7.52	2	8.16
SCS64-150	90,278	159,313	16.9	82.1	5.91	17.72	9.49	1	11.25

¹ The values are reduced by 20 % at max. side load angle.

SCS38 to SCS63


Low reaction forces with long strokes

High Rack Damper, Optimized Characteristic Energy capacity 32,000 in-lbs/Cycle to 1,912,000 in-lbs/Cycle Stroke 1.97 in to 47.24 in

Slim with a long stroke: safety shock absorbers from the SCS38 to SCS63 product family are designed for emergency-stop applications. Strokes of up to 47.24" (1,200 mm) are possible with these maintenance-free and ready-to-install dampers. Low reaction forces result due to the large strokes.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. The characteristic curve or damping characteristics of all safety shock absorbers from ACE are individually designed to the specific customer application. The metering orifices for the applications are specially calculated and produced. These tailor-made machine elements are the ideal protection because they are less expensive than industrial shock absorbers and are effective with up to 1,000 possible full load emergency stops.

Anyone who wants to reliably protect the end positions of rack operating equipment, conveyor and crane systems, heavy duty applications and test benches chooses these safety shock absorbers from ACE.

Technical Data

Energy capacity: 32,000 in-lbs/Cycle to 1,912,000 in-lbs/Cycle

Impact velocity range: 1.6 ft/sec to 15 ft/sec. Other speeds on request.

Reacting force: At max. capacity rating =

18,000 lbs to 47,200 lbs

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position Positive stop: Integrated

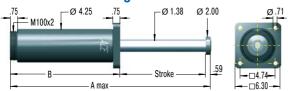
Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston rod: Hard

chrome plated steel

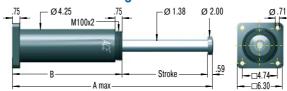
Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 29 psi. Rod return by integrated nitogen accumulator.

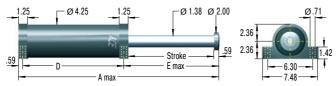
Application field: Shelf storage systems, Heavy load applications, Conveyor systems, Conveyor systems, Portal systems, Test stations


Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

On request: Special oils, special flanges, additional corrosion protection etc. Integrated rod sensor for indicating the complete extension of the piston rod. Type normally closed or normally open, option PNP or NPN switch.



High Rack Damper, Optimized Characteristic


SCS38-F Front Flange

SCS38-R Rear Flange

SCS38-S Foot Mount

Technical Data

Impact velocity range: 3 ft/sec to 15 ft/sec

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

Motor power: HP (horsepower)
Stall torque factor: ST (normal, 2.5)
(Alternatively: Propelling force F (lbs))
Number of absorbers in parallel: n

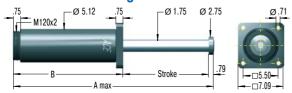
or technical data according to formulae and calculations

on page 275.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example Sc\$38-400-F-X Safety Shock Absorber Bore Size Ø 1.50" (38 mm) Stroke 15.75" (400 mm) Mounting Style: Front Flange Identification No. assigned by ACE

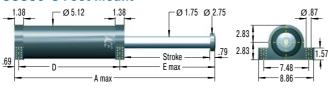
Please indicate identification no. in case of replacement order


Performance	e and Dimension	18										
									Mounti	ng Style	Mountir	ng Style
									¹ F and S	¹ R		
		Return Force	Return Force						Side Load Angle	Side Load Angle	F and R	S
TYPES	Energy capacity in-lbs/cycle	min. Ibs	max. Ibs	Stroke inch	A max. inch	B inch	D inch	E max. inch	max.	max.	Weight Ibs	Weight Ibs
SCS38-50	32,000	135	157	1.97	10.63	8.07	6.89	3.15	5.0	4.0	26.5	28.7
SCS38-100	64,000	135	157	3.94	14.57	10.04	8.77	5.21	5.0	4.0	30.9	33.1
SCS38-150	96,000	135	157	5.91	18.50	12.01	10.83	7.08	5.0	4.0	35.3	37.5
SCS38-200	127,000	135	157	7.87	22.44	13.98	12.80	9.05	5.0	4.0	39.7	41.9
SCS38-250	159,000	135	157	9.84	26.38	15.94	14.77	11.02	4.7	3.7	44.1	46.3
SCS38-300	191,000	135	157	11.81	30.91	18.50	17.33	12.99	3.9	2.9	48.5	48.5
SCS38-350	223,000	135	157	13.78	34.84	20.47	19.29	14.96	3.4	2.4	52.9	55.1
SCS38-400	255,000	135	157	15.75	39.37	23.03	21.85	16.93	3.0	2.0	57.3	59.5
SCS38-500	319,000	135	157	19.69	47.83	27.56	26.38	20.56	2.4	1.4	66.2	68.4
SCS38-600	382,000	135	157	23.62	56.30	32.09	30.91	24.80	1.9	0.9	75.0	75.0
SCS38-700	446,000	135	157	27.56	64.76	36.61	35.43	28.74	1.6	0.6	83.8	86.0
SCS38-800	510.000	135	157	31.50	73.23	41.14	39.97	32.67	1.3	0.3	94.8	97.0

¹ The values are reduced by 20 % at max. side load angle.



High Rack Damper, Optimized Characteristic


SCS50-F Front Flange

SCS50-R Rear Flange

SCS50-S Foot Mount

Technical Data

Impact velocity range: 2 ft/sec to 15 ft/sec

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

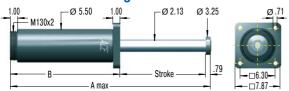
or technical data according to formulae and calculations

on page 275.

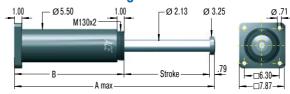
The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	SCS50-400-F-X
Safety Shock Absorber	
Bore Size Ø 1.97" (50 mm)	
Stroke 15.75" (400 mm)	
Mounting Style: Front Flange	
Identification No. assigned by ACE	
B	

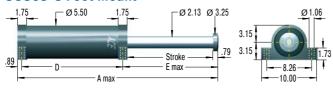
Please indicate identification no. in case of replacement order


Performance	e and Dimension	ıs										
									Mounti	ng Style	Mountir	ng Style
									¹ F and S	1 R		
		Return Force	Return Force						Side Load Angle	Side Load Angle	F and R	S
TYPES	Energy capacity in-lbs/cycle	min. Ibs	max. Ibs	Stroke inch	A max. inch	B inch	D inch	E max. inch	max.	max.	Weight Ibs	Weight Ibs
SCS50-100	124,000	225	270	3.94	15.35	10.63	9.25	5.41	5.0	4.0	48.5	50.7
SCS50-150	186,000	225	270	5.91	19.29	12.60	11.22	7.38	5.0	4.0	55.1	57.3
SCS50-200	248,000	225	270	7.87	23.23	14.57	13.19	9.35	5.0	4.0	59.5	61.7
SCS50-250	310,000	225	270	9.84	27.17	16.54	15.16	11.32	4.5	3.5	66.2	68.4
SCS50-300	372,000	225	270	11.81	31.69	19.09	17.71	13.29	3.8	2.8	72.8	75.0
SCS50-350	434,000	225	270	13.78	35.63	21.06	19.69	15.25	3.3	2.3	77.2	81.6
SCS50-400	496,000	225	270	15.75	40.16	23.62	22.25	17.22	2.9	1.9	83.8	88.2
SCS50-500	620,000	225	270	19.69	48.62	28.15	26.77	21.16	2.3	1.3	97.0	99.2
SCS50-600	743,000	225	270	23.62	57.09	32.68	31.30	25.10	1.9	0.9	110.3	112.5
SCS50-700	867,000	225	270	27.56	65.55	37.20	35.83	29.03	1.6	0.6	121.3	125.7
SCS50-800	991,000	225	270	31.50	74.02	41.73	40.36	32.97	1.3	0.3	134.5	138.9
SCS50-1000	1,239,000	225	270	39.37	90.94	50.79	49.40	40.85	1.0	0.0	158.8	163.2

¹ The values are reduced by 20 % at max. side load angle.



High Rack Damper, Optimized Characteristic


SCS63-F Front Flange

SCS63-R Rear Flange

SCS63-S Foot Mount

Technical Data

Impact velocity range: 1.6 ft/sec to 15 ft/sec

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.

Creep speed: vs (ft/s)

Issue 04.2018 - Specifications subject to change

Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

or technical data according to formulae and calculations on page 275.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	SCS63-400-F-X					
Safety Shock Absorber						
Bore Size Ø 2.48" (63 mm)						
Stroke 15.75" (400 mm)						
Mounting Style: Front Flange						
Identification No. assigned by ACE						

Please indicate identification no. in case of replacement order

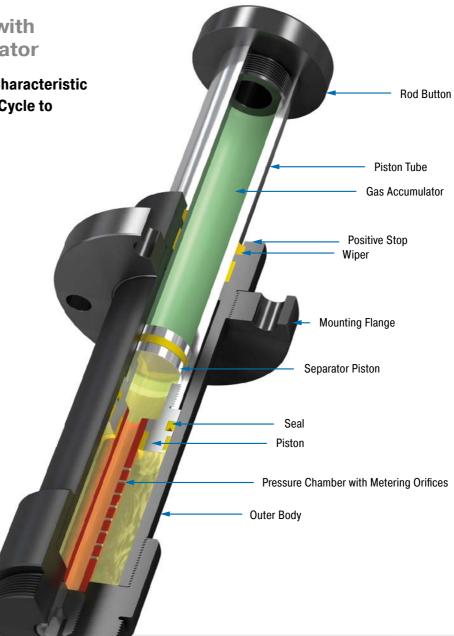
e and Dimension	ns										
								Mountii	ng Style	Mountii	ng Style
								¹ F and S	1 R		
	Return Force	Return Force						Side Load Angle	Side Load Angle	F and R	S
Energy capacity	min.	max.	Stroke	A max.	_	_		max.	max.	Weight	Weight
in-lbs/cycle	lbs	lbs	inch	inch	inch	inch	inch	•	•	lbs	lbs
159,000	337	562	3.94	15.94	11.22	9.47	5.59	5.0	4.0	63.9	70.6
239,000	337	562	5.91	19.88	13.19	11.44	7.56	5.0	4.0	70.6	77.2
319,000	337	562	7.87	23.82	15.16	13.41	9.53	5.0	4.0	77.2	83.8
398,000	337	562	9.84	27.76	17.13	15.39	11.49	5.0	4.0	83.8	92.6
478,000	337	562	11.81	31.69	19.09	17.35	13.46	5.0	4.0	90.4	99.2
558,000	337	562	13.78	36.42	21.85	20.11	15.43	5.0	4.0	99.2	108.0
637,000	337	562	15.75	40.35	23.82	22.01	17.40	5.0	4.0	105.8	114.7
797,000	337	562	19.69	49.02	28.54	26.80	21.34	4.2	3.2	121.3	132.3
956,000	337	562	23.62	56.89	32.48	30.74	25.30	3.4	2.4	136.7	145.5
1,115,000	337	562	27.56	65.55	37.20	35.46	29.21	2.9	1.9	152.1	161.0
1,275,000	337	562	31.50	73.43	41.14	39.40	33.15	2.5	1.5	165.4	174.2
1,593,000	337	562	39.37	89.96	49.80	48.06	41.02	1.9	0.9	196.2	205.1
1,912,000	337	562	47.24	106.50	58.46	56.72	48.90	1.4	0.4	224.9	233.7
	Energy capacity in-lbs/cycle 159,000 239,000 319,000 398,000 478,000 558,000 637,000 797,000 956,000 1,115,000 1,275,000 1,593,000	Energy capacity min. in-lbs/cycle lbs 159,000 337 239,000 337 319,000 337 398,000 337 478,000 337 558,000 337 797,000 337 797,000 337 1,115,000 337 1,275,000 337 1,593,000 337	Return Force Return Force min. max. lbs lb	Energy capacity in-lbs/cycle Return Force min. max. lbs inch Stroke inch 159,000 337 562 3.94 239,000 337 562 5.91 319,000 337 562 7.87 398,000 337 562 9.84 478,000 337 562 11.81 558,000 337 562 13.78 637,000 337 562 15.75 797,000 337 562 19.69 956,000 337 562 23.62 1,115,000 337 562 31.50 1,275,000 337 562 31.50 1,593,000 337 562 39.37	Return Force Return Force Max. Stroke A max.	Return Force Return Force Head Return Force Return Force	Return Force Return Force Fine Return Force Fine Return Force Retur	Return Force Return Force Fine Return Force Return Force	Return Force Return Force Return Force Return Force Inch Inc	Return Force Return Force Return Force Incrementary Image: Property Imag	Return Force Return Force Return Force Energy capacity min. max. Stroke inch inch

¹ The values are reduced by 20 % at max. side load angle.

CB63 to CB160

High resetting forces with gas pressure accumulator

Crane Installations, Optimized Characteristic Energy capacity 141,600 in-lbs/Cycle to


4,248,000 in-lbs/Cycle

Stroke 3.94 in to 31.50 in

Robust powerhouse: the CB63 to CB160 product family with internal system seals are used in heavy duty areas for emergency stop. Even dirt or scratches to the piston rod do not lead to a leakage or failure. Compressed gas accumulators allow return forces of up to 22,481 lb. (100 kN) in the CB models, which can make applications in multiple bridge crane systems safer, for example. The absorber body and the robust, large-sized piston rod bearing are also designed for heavy duty operations.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. Just like all ACE safety shock absorbers, the characteristic curve or damping characteristics of each individual CB unit is individually designed to the customer application.

Whether its crane systems or machines in heavy duty applications e.g. in the metal industry or in mining, these powerful safety shock absorbers reliably protect construction designs against expensive failure.

Technical Data

Energy capacity: 141,600 in-lbs/Cycle to

4,248,000 in-lbs/Cycle

Impact velocity range: 1.6 ft/sec to 15 ft/sec. Other speeds on request.

Reacting force: At max. capacity rating =

42,000 lbs to 157,000 lbs

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position **Positive stop:** Integrated

Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston tube: Hard

chrome plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 81 psi to 86 psi. Rod return by integrated nitogen accumulator.

Application field: Heavy load applications, Heavy load applications, Conveyor systems, Portal systems

Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

On request: Special oils, special flanges, additional corrosion protection etc.

Crane Installations, Optimized Characteristic

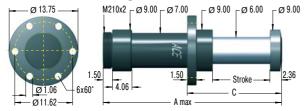
CB63-F Front Flange

Reacting force: at max. capacity rating = 42,000 lbs max.

CB63-R Rear Flange

Reacting force: at max. capacity rating = 42,000 lbs max.

CB100-F Front Flange


Reacting force: at max. capacity rating = 105,000 lbs max.

CB100-R Rear Flange

Reacting force: at max. capacity rating = 105,000 lbs max.

CB160-F Front Flange

Reacting force: at max. capacity rating = 157,000 lbs max.

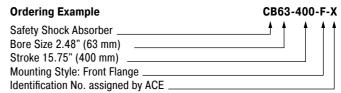
CB160-R Rear Flange

Reacting force: at max. capacity rating = 157,000 lbs max.

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.


Creep speed: vs (ft/s)

Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

Porformance and Dimension

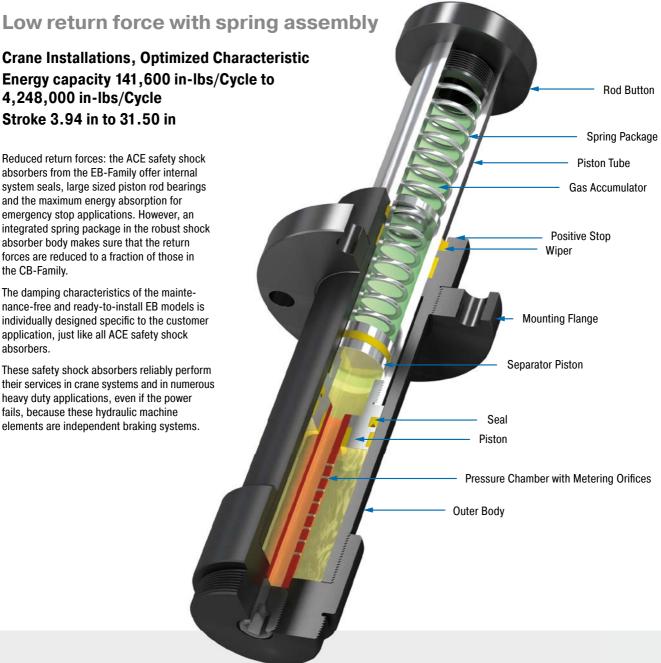
or technical data according to formulae and calculations on page 275.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Please indicate identification no. in case of replacement order

		Effectiv	e Weight								
TVDEO	E ₃	We min.	We max.	Return Force min.	Return Force max.	Stroke	A max.	В	С.	¹ Side Load Angle max.	Weight
TYPES	in-lbs/cycle	lbs	lbs	lbs	lbs	inch	inch	inch	inch	-	lbs
CB63-100	141,600	3,330	282,000	393	4,110	3.94	16.54	11.34	7.56	3.5	28.0
CB63-200	283,200	6,660	564,000	393	5,392	7.87	27.56	18.43	11.50	3.0	36.8
CB63-300	424,800	10,010	847,000	393	6,038	11.81	38.58	25.51	15.43	2.5	45.9
CB63-400	566,400	13,340	1,129,000	393	6,404	15.75	49.61	32.60	19.37	2.0	54.7
CB63-500	708,000	16,670	1,411,000	393	6,660	19.69	60.63	39.69	23.31	1.5	63.5
CB100-200	708,000	16,670	1,411,000	1,005	9,917	7.87	28.94	19.49	12.60	4.0	93.7
CB100-300	1,062,000	25,000	2,116,000	1,005	12,540	11.81	39.57	26.18	16.54	3.5	112.0
CB100-400	1,416,000	33,330	2,822,000	1,005	14,459	15.75	50.20	32.87	20.47	3.0	130.3
CB100-500	1,770,000	41,670	3,527,000	1,005	15,916	19.69	60.83	39.57	24.41	2.5	148.8
CB100-600	2,124,000	50,000	4,233,000	1,005	17,058	23.62	71.46	46.26	28.35	2.0	167.1
CB160-400	2,124,000	50,000	4,233,000	2,455	15,845	15.75	55.12	37.01	23.62	4	339.6
CB160-600	3,186,000	75,000	6,349,000	2,455	15,857	23.62	78.74	52.76	31.50	3	414.5
CB160-800	4,248,000	100,000	8,466,000	2,455	15,869	31.50	102.36	68.50	39.37	2	487.3

 $^{^{\}mbox{\tiny 1}}$ The values are reduced by 20 % at max. side load angle.


EB63 to EB160

Crane Installations, Optimized Characteristic Energy capacity 141,600 in-lbs/Cycle to 4,248,000 in-lbs/Cycle Stroke 3.94 in to 31.50 in

Reduced return forces: the ACE safety shock absorbers from the EB-Family offer internal system seals, large sized piston rod bearings and the maximum energy absorption for emergency stop applications. However, an integrated spring package in the robust shock absorber body makes sure that the return forces are reduced to a fraction of those in the CB-Family.

The damping characteristics of the maintenance-free and ready-to-install EB models is individually designed specific to the customer application, just like all ACE safety shock absorbers.

These safety shock absorbers reliably perform their services in crane systems and in numerous heavy duty applications, even if the power fails, because these hydraulic machine elements are independent braking systems.

Technical Data

Energy capacity: 141,600 in-lbs/Cycle to 4,248,000 in-lbs/Cycle

Impact velocity range: 1.6 ft/sec to 15 ft/sec. Other speeds on request.

Reacting force: At max. capacity rating =

42,000 lbs to 157,000 lbs

Operating temperature range: 10 °F to 150 °F. Other temperatures on request.

Mounting: In any position Positive stop: Integrated

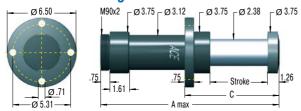
Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston tube: Hard

chrome plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 8 psi to 16 psi. Rod return by integrated nitogen accumulator combined with additional return spring.

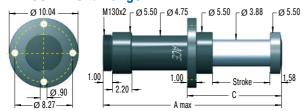
Application field: Heavy load applications, Heavy load applications, Conveyor systems, Portal systems


Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

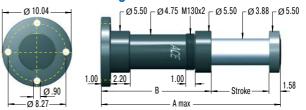
On request: Special oils, special flanges, additional corrosion protection etc.

Crane Installations, Optimized Characteristic

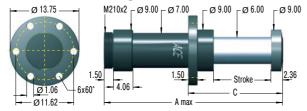
EB63-F Front Flange


Reacting force: at max. capacity rating = 42,000 lbs max.

EB63-R Rear Flange


Reacting force: at max. capacity rating = 42,000 lbs max.

EB100-F Front Flange


Reacting force: at max. capacity rating = 105,000 lbs max.

EB100-R Rear Flange

Reacting force: at max. capacity rating = 105,000 lbs max.

EB160-F Front Flange

Reacting force: at max. capacity rating = 157,000 lbs max.

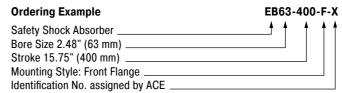
EB160-R Rear Flange

Reacting force: at max. capacity rating = 157,000 lbs max.

Complete details required when ordering

Moving load: W (lbs)

Impact velocity range: v (ft/s) max.


Creep speed: vs (ft/s)

Motor power: HP (horsepower) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (lbs)) Number of absorbers in parallel: n

Daufaumanaa and Dimanaian

or technical data according to formulae and calculations on page 275.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Please indicate identification no. in case of replacement order

		Effectiv	ve Weight								
				Return Force	Return Force					1 Side Load	
	E ₃	We min.	We max.	min.	max.	Stroke	A max.	В	С	Angle max.	Weight
TYPES	in-lbs/cycle	lbs	lbs	lbs	lbs	inch	inch	inch	inch	•	lbs
EB63-100	141,600	3,330	282,000	157	1,562	3.94	16.54	11.34	7.56	3.5	30.2
EB63-200	283,200	6,660	564,000	172	2,084	7.87	27.56	18.43	11.50	3.0	36.8
EB63-300	424,800	10,010	847,000	187	2,372	11.81	38.58	25.51	15.43	2.5	48.1
EB63-400	566,400	13,340	1,129,000	136	2,496	15.75	49.61	32.60	19.37	2.0	56.9
EB63-500	708,000	16,670	1,411,000	151	2,691	19.69	60.63	39.69	23.31	1.5	65.7
EB100-200	708,000	16,670	1,411,000	271	1,999	7.87	28.94	19.49	12.60	4.0	93.7
EB100-300	1,062,000	25,000	2,116,000	213	3,163	11.81	39.57	26.18	16.54	3.5	112.0
EB100-400	1,416,000	33,330	2,822,000	267	4,089	15.75	50.20	32.87	20.47	3.0	130.3
EB100-500	1,770,000	41,670	3,527,000	209	4,686	19.69	60.83	39.57	24.41	2.5	151.0
EB100-600	2,124,000	50,000	4,233,000	263	5,248	23.62	71.46	46.26	28.35	2.0	169.3
EB160-400	2,124,000	50,000	4,233,000	421	4,071	15.75	55.12	37.01	23.62	4	343.1
EB160-600	3,186,000	75,000	6,349,000	474	4,225	23.62	78.74	52.76	31.50	3	416.7
EB160-800	4,248,000	100,000	8,466,000	535	4,380	31.50	102.36	68.50	39.37	2	490.2

 $^{^{\}mbox{\tiny 1}}$ The values are reduced by 20 % at max. side load angle.

Permitted Use

ACE safety shock absorbers are machine elements to brake moving masses in a defined end position in emergency stop situations for axial forces. The safety shock absorbers are not designed for regular operational usage.

Calculation of safety shock absorbers

The calculation of safety shock absorbers should generally be performed or checked by ACE.

Deceleration Properties

The orifice sizing and drill pattern in the pressure chamber are individually designed for each safety shock absorber. The respective absorption characteristic is optimized corresponding to the maximum mass that occurs in the emergency stop and the impact speed. Correspondingly, each safety shock absorber is given an individual identification number.

Model Code

For types SCS33 to 64, the individual five-digit identification numbers can be taken from the last digits of the shock absorber model code shown on the label. Example: SCS33-50-XXXXX. For type series SCS38 to SCS63, CB63 to CB160 and EB63 to EB160, the identification number is a five digit number. Example: SCS38-400-F-XXXXX. In addition to the model code, the label also shows the authorized maximum impact velocity and maximum authorised impact mass for the unit. The factory assigns these identification numbers. Please contact the factory for complete part number.

Mounting

To mount the shock absorber, we recommend the use of original ACE mounting accessories shown in catalog.

The mounting of each shock absorber must be exactly positioned so that the reaction force (Q) can be adequately transmitted into the mounting structure.

ACE recommends installation via the front flange -F mounting style that ensures the maximum protection against buckling. The damper must be mounted so that the moving loads are decelerated with the least possible side loading to the piston rod. The maximum permissable side load angles are detailed in our current catalogue.

The entire stroke length must be used for deceleration because only using part of the stroke can lead to overstressing and damage to the unit.

Mounting style front flange

Safety Shock Absorber SCS 38-66

Safety Shock Absorber CB

Environmental Requirements

The permissible **temperature range** for each shock absorber type can be found in our current catalogue.

Caution: Usage outside the specified temperature range can lead to premature breakdown and damage of of the shock absorbers which can then result in severe system damage or machine failures.

Trouble free operation outdoors or in damp environments is only warranted if the dampers are coated with a specific corrosion protection finish.

Initial Start-Up Checks

First impacts on the shock absorber should only be tried after correctly mounting and with reduced impact speeds and – if possible – with reduced load. Differences between calculated and actual operating data can then be detected early on, and damage to your system can be avoided. If the shock absorbers were selected on calculated data that does not correspond to the maximum possible loading (i.e. selection based on drive power being switched off or at reduced impact speed) then these restricted impact conditions must not be exceeded during initial testing or subsequent use of the system. Otherwise you risk damaging the shock absorbers and/or your machine by overstressing materials. After the initial trial check that the piston rod fully extends again and that there are no signs of oil leakage. Also check that the mounting hardware is still securely tightened. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware.

Fixed Mechanical Stop

Safety shock absorbers do not need an external stop as a stroke limiter. The stroke of the safety absorber is limited by the stop of the impact head on the shock absorber. For types SCS33 to SCS64, the fixed stop point is achieved with the integrated stop collar.

What Needs to be Checked after a Full Load Impact?

Safety shock absorbers that were originally checked only at reduced speed or load need to be checked again after a full load impact (i.e. emergency use) has occurred. Check that the piston rod fully extends to its full out position, that there are no signs of oil leakage and that the mounting hardware is still securely fixed. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware. If no damage has occurred, the safety shock absorber can be put back into normal operation (see initial start-up).

Maintenance

Safety shock absorbers are sealed systems and do not need special maintenance. Safety shock absorbers that are not used regularly (i.e. that are intended for emergency stop systems) should be checked within the normal time frame for safety checks, but **at least once a year**. At this time special attention must be paid to checking that the piston rod resets to its fully extended position, that there is no oil leakage and that the mounting brackets are still secure and undamaged. The piston rod must not show any signs of damage. Safety shock absorbers that are **in use regularly** should be checked **every three months**.

Repair Notice

If any damage to the shock absorber is detected or if there are any doubts as to the proper functioning of the unit please send the unit for service to ACE. Alternatively contact your local ACE office for further advice.

Detailed information on the above listed points can be taken from the corresponding operating and assembly instructions.

Formulas and Calculations

Calculation Data for the Design of **Safety Shock Absorbers**

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping element. It is easy to calculate around 90 % of applications knowing only the following four parameters:

1. Weight to be decelerated	W	[lbs]
2. Impact velocity at shock absorber	v _D	[ft/s]
3. Propelling force	F	[lbs]
4. Number of absorbers in parallel	n	

Key to symbols used

E,	Kinetic energy per cycle	in-lbs	$^{2}V_{D}$	Impact velocity at shock absorber	ft/s
E,	Propelling force energy per cycle	in-lbs	F	Propelling force	lbs
E_3^r	Total energy per cycle (E ₁ + E ₂)	in-lbs	С	Cycles per hour	1/hr
¹Ě₄	Total energy per hour (E ₃ · x)	in-lbs/hr	S	Shock absorber stroke	in
We	Effective weight	lbs	Q	Reaction force	lbs
W	Weight to be decelerated	lbs	t	Deceleration time	S
n	Number of shock absorbers (in parallel)		a	Deceleration	ft/s²
² V	Velocity at impact	ft/s			

¹ All mentioned values of E, in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (E_3) , (E_4) , (We) and the desired shock absorber stroke(s).

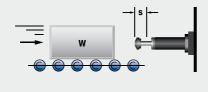
Note: When using several shock absorbers in parallel, the values (E_3) , (E_4) and (We) are divided according to the number of units used.

Application	Formula	Example			
19 Wagon against 2 shock absorbers	$\begin{aligned} E_{_1} &= 0.093 \cdot W \cdot v^2 \\ E_{_2} &= F \cdot s \\ E_{_3} &= E_{_1} + E_{_2} \\ v_{_D} &= v \cdot 0.5 \\ We &= E_{_3} / (0.186 \cdot v_{_D}^{\ 2}) \end{aligned}$		=	4650 955 <u>5605</u> 112100 in 2.5 4194	in-lb in-lb in-lb/hr i-lb/hr ft/s lbs
20 Wagon against wagon	$\begin{split} E_1 &= \frac{0.186 \ (W_1 \cdot W_2)}{(W_1 + W_2) \cdot (v_1 \cdot v_2)^2} \\ E_2 &= F \cdot S \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot C \\ v_D &= (v_1 + v_2) / 2 \\ We &= E_3 / (0.186 \cdot v_D^2) \end{split}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= = = = =	5079 2910 7989 1.6 4194	in-lb in-lb in-lb ft/s lbs
21 Wagon against wagon 2 shock absorbers	$\begin{split} E_1 &= \frac{0.093 \ (W_1 \cdot W_2)}{(W_1 + W_2) \cdot (v_1 + v_2)^2} \\ E_2 &= F \cdot s \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v &= v_1 + v_2 / 2 \\ We &= E_3 / (0.186 \cdot v_D^2) \end{split}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= = = = =	2540 1910 4450 1.6 9346	in-lb in-lb in-lb ft/s lbs

² v or v_p is the final impact velocity of the mass. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

Application Examples

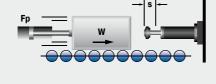
SCS45


Controlled emergency stop

ACE safety shock absorbers protect precision assembly jigs for the aircraft industry. The basic mount of this coordinate measuring machine for the production of parts in the aircraft industry is made of granite and must not be damaged. To avoid damage from operating errors or mishandling, all movement axes were equipped with safety shock absorbers of the type SCS45-50. If the turntables malfunction the safety shock absorbers decelerate the loads before expensive damage can occur to the granite measuring tables.

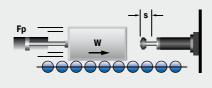
Optimally protected turntable

SCS33, SCS45


High-level protection of linear modules

Safety shock absorbers produced by ACE are installed in the top linear system models of one of the most prestigious companies in the field of drive and control technology. Their job: to protect the z-axis from damage caused by uncontrolled movements. Various safety dampers are used for different load ranges. Tests have shown that, in the worst case, a collision speed of up to 16.5 f/s might occur. To be on the safe side, the interpretations were based in all cases on a slightly higher value.

For protecting equipment and modules such as these, the SCS series from ACE is the ideal solution in the emergency stop sector Roth GmbH & Co. KG, 90411 Nürnberg, Germany and Bosch Rexroth AG, 97816 Lohr am Main, Germany


Application Examples

SCS38

Safe driving in end positions with ACE

The aim was to protect a driving simulation capsule on two of its eight axes. The demands placed on a potential emergency stopper were high because it was clear that its failure would lead to massive damage to the complete construction as well as to the capsule. Even the possibility of damage to the health of the test personnel could not be ruled out and was taken into consideration in a diverse range of mass-speed combinations. Two ACE safety shock absorbers now safely contain destructive forces, e.g. during power outages, and eliminate high risks.

ACE safety shock absorbers protect end positions in two axes of a driving simulator $\,$

Bosch Rexroth BV, Boxtel 5281 RV, The Netherlands and University of Stuttgart - FKFS, 70569 Stuttgart, Germany

Safety Bumpers

Top for emergency stopping

The extremely successful TUBUS series from ACE is suitable for emergency stopping, as overrun protection or as end stop dampers. Available in different variations for heavy duty or crane installations, these profile dampers are perfect when loads do not need to be instantly decelerated or when working under extreme conditions.

Made of co-polyester elastomer, the highly resistant absorbers provide high force and energy absorption in areas where other materials fail or where a similarly high service life of up to 1 million load cycles cannot be achieved. They are cost-effective and distinguished by the small, light design. With energy absorption within a range of 3,983 and 157,632 in-lbs, they can be considered as an alternative to hydraulic end position damping.

Safety Bumpers

TUBUS TC and TC-S

Crane Installations

Compact powerhouseCrane systems, Loading and lifting equipment, Hydraulic devices,

Electro-mechanical drives

Page 280

Extremely durable

Highly resistant co-polyester elastomers

Lightweight designs

Cost-effective use

Heavy-duty versions available

TUBUS TC and TC-S

Compact powerhouse

Crane Installations

Energy capacity 5,576 in-lbs/Cycle to 157,632 in-lbs/Cycle

Maximum stroke 1.18 in to 7.80 in

For even more protection: the profile dampers from the TC range of the ACE TUBUS-Series can also be used as safety dampers. These maintenance-free, ready-to-install damping elements made of co-polyester elastomer have been specially developed for use in crane systems and meet the international industry standards for OSHA and CMAA. The TC-S design employs a unique dual concept to achieve the spring rate required for crane systems.

Whether TC-S or TC, this range of models represents a cost-effective solution with high energy absorption for energy management systems. The very small and light design of Ø 2.52" to Ø 6.93" (Ø 64 mm to Ø 176 mm) progressively covers energy absorption within a range of 3,983 in-lbs to 157,632 in-lbs (450 Nm to 17,810 Nm).

The profile dampers from the TC range protect cranes, loading and lifting equipment, hydraulic units and much more.

Technical Data

Energy capacity: 5,576 in-lbs/Cycle to

157,632 in-lbs/Cycle

Energy absorption: 31 % to 64 % Dynamic force range: 17,985 lbs to

219,864 lbs

Operating temperature range: -40 °F to

120 °F

Construction size: 2.52 in to 6.93 in Material hardness rating: Shore 55D Material: Profile body: Co-Polyester

Elastomer

Mounting: In any position

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 16.4 ft/sec

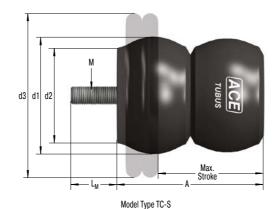
Torque max.: M12: 36.88 ft-lbs

M16: 29.50 ft-lbs (DIN912)

M16: 88.51 ft-lbs (shouldered screw)

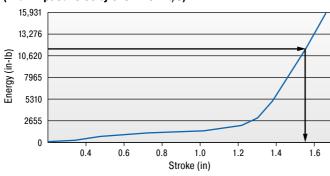
Application field: Crane systems, Loading and lifting equipment, Hydraulic devices,

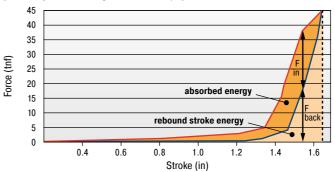
Electro-mechanical drives


Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Crane Installations


TC



Characteristics

Type TC90-49 Energy-Stroke Characteristic (dynamic) (with impact velocity over 1.64 ft/s)

Type TC90-49
Force-Stroke Characteristic (dynamic)
(with impact velocity over 1.64 ft/s)

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed.

Example: With impact energy of 11,506 lbs the Energy-Stroke diagram shows that a stroke of about 1.50 in is needed.

On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length.

Note: With these types the return force towards the end of the stroke is significant and we recommend you try to use a minimum of 90 % of the total stroke available.

Dynamic (v > 1.64 ft/s) and static ($v \le 1.64$ ft/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	TC83-73-S
TUBUS Crane Buffer	
Outer-Ø 3.27" (83 mm)	
Stroke 2.87" (73 mm)	
Model Type Soft	

		Emergency Stop								
TYPES	¹ E₃ in-lbs/cycle	E ₃ in-lbs/cycle	Stroke max. inch	A inch	d1 inch	d2 inch	d3 inch	L _M inch	M	Weight Ibs
TC64-62-S	3,983	5,576	2.44	3.11	2.52	2.05	3.50	0.47	M12	0.385
TC74-76-S	8,674	12,143	2.99	3.78	2.91	2.40	4.49	0.47	M12	0.574
TC83-73-S	17, 170	24,030	2.87	3.70	3.27	2.72	5.00	0.47	M12	0.722
TC86-39	10,709	15,002	1.54	2.20	3.39	3.07	5.24	0.47	M12	0.626
TC90-49	14,515	20,312	1.93	2.68	3.54	2.64	4.88	0.47	M12	0.583
TC100-59	15,799	22,127	2.32	3.31	3.94	3.58	5.87	0.47	M12	1.196
TC102-63	17,436	24,428	2.48	3.86	4.02	3.23	5.51	0.87	M16	1.459
TC108-30	16,816	23,543	1.18	2.09	4.25	3.03	5.24	0.47	M12	0.863
TC117-97	32,836	45,980	3.82	5.08	4.61	3.94	7.40	0.63	M16	2.299
TC134-146-S	64,699	90,543	5.75	7.40	5.28	4.61	8.46	1.18	M16	3.737
TC136-65	37,616	52,662	2.56	4.17	5.35	4.17	7.01	0.63	M16	2.529
TC137-90	56,202	78,683	3.54	4.53	5.39	4.45	8.50	0.83	M16	2.647
TC146-67-S	73,727	103,200	2.64	4.65	5.75	3.90	7.52	0.63	M16	3.468
TC150-178-S	78,418	109,749	7.01	9.49	5.91	5.20	8.82	0.63	M16	5.896
TC153-178-S	64,256	89,968	7.01	8.90	6.02	5.16	9.49	0.63	M16	5.560
TC168-124	89,392	125,149	4.88	6.54	6.61	5.79	10.24	0.63	M16	5.585
TC176-198-S	112,626	157,632	7.80	9.92	6.93	5.91	10.98	0.63	M16	8.070

¹ Max. energy capacity per cycle for continous use.

Clamping Elements

On-the-spot clamping and stopping in emergencies and other situations

Clamping elements from the LOCKED series provide a high level of safety. These ACE products clamp and decelerate loads and are suitable for perfectly controlled holding, both linear and rotary, in all processes.

Alongside ACE LOCKED solutions for conventional rail, rod or rotation clamping, special clamps with safety function for Z-axes, which reliably help secure axes with a gravitational load, are available in the LOCKED LZ-P series. The latter solution is available for both pneumatic operation and as an electric version. Whether Z-axes, linear guide, rod or rotation clamping, the choice is (typical of ACE) as large as the performance capacity of the products, which are compatible with the solutions of all standard manufacturers.

LOCKED by ACE. After all, safe is safe.

Increased process reliability

Available as clamping and emergency stop brakes

Very short stop distances

Very high clamping forces

Compact designs

Ideal for all standard sizes

Rail Clamping

For safe deceleration of rail-guided construction elements

Safe deceleration of a mass that is traversed with the help of a rail and guide rail and track carriage combination must be complied with and not only for safety reasons; reliable clamps in the production processes are also becoming increasingly important.

Both features can be taken care of by the clamping elements from ACE. All clamping elements work with the patented spring steel plate system.

This system achieves braking and clamping forces of up to 2,248 lbs. The clamping elements are always individually adapted to the used linear guide. They are available for all rail sizes and profiles for all renowned manufacturers.

Function of clamping elements LOCKED PL/SL/PLK/SLK

All process and safety clamps work with the reinforced spring steel plate system.

Compressed air is introduced between the two spring plates, which are connected with a surrounding rubber coating.

If pressure is applied, the clamping element can freely move; if the clamping element is vented clamping to the guide rail follows.

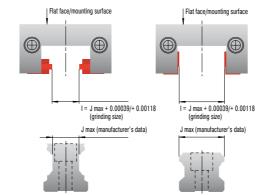
Clamping element ventilated

Clamping element vented

Released

The chamber filled with compressed air between the spring steel plates relaxes and thus releases the clamping/brake pads from the rail. The clamping element is now free to move.

Engaged


The clamping force of the mechanically pre-stressed spring steel plates is transferred to the clamping/brake pads as holding force. The clamping element is clamped on the guide rail.

Slot dimensions between braking and clamping linings and linear guide rail

The internal dimension "I" between the linings of every LOCKED rail clamping is ground to an exact value.

This is always 0.0004 to 0.0012 inch greater than the upper limit J max. of the respective linear guide rail (see drawing), resulting from the manufacturer's directives.

The maximum holding force results at J max. and, in the most unfavorable case, holding force losses up to 30 % can occur (see table).

Air Gap	Loss in Holding
Lining/Linear Guide Rail	Force
inch	%
0.0004	5
0.0012	10
0.0020	20
0.0028	30

Different brake pads for PL/PLK and for SL/SLK

The process clamps and safety clamps are available completely identical in their

They differ only in the clamping and brake pads material.

Clamping

Position Clamping The types of the LOCKED series PL and PLK are designed for clamping directly on the linear guide. The clamping linings are produced from tool steel and offer 100 % clamping force, even in the case of lubricated rails.

Position Clamping and Emergency Stop Braking

With the typical SL, SLK, low-wear sinter graphite linings are employed. These enable both a position clamping, as well as emergency stop braking on the linear guide. In case of lubricated rails, a stopping force of 60 % of the nominal stopping force should be considered.

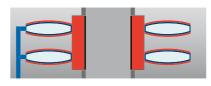
Issue 04.2018 – Specifications subject to change

Clamp Versions

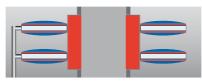
Rod Clamping

The modular solution for exact holding at certain positions

Safe and reliable stopping at a position or an operating state is an important part of many production processes. This task can be performed by the clamping elements from ACE. If clamping on a rod is required, the clamping elements of the PN and PRK families are the right choice.


Thanks to the patented spring steel plate system the rod clamps transfer clamping forces of up to 6,070 lbs directly to the (piston) rod.

The PN and PRK rod clamps can absorb both axial and rotary forces.


Function of clamping elements LOCKED PN and PRK

Consisting of a deck plate, one to four clamping units and a base plate, all rod clamps work with the reinforced spring steel plate system.

Through that, both axial and rotary forces can be absorbed.

Clamping element is released

Clamping element is engaged

Released

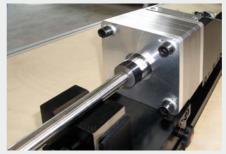
The membrane filled with compressed air relaxes the spring steel plate system and releases the clamping sleeve.

Engaged

The clamping force of the mechanically pre-stressed spring steel plates system is transferred as as a holding force into the clamping sleeve. The rod or shaft is engaged.

Intelligent component system solution

By connecting up to four clamping units between the base and deck plates, it is possible to easily increase the clamping force.



Modular construction

Component tolerances for LOCKED PN and PRK

Design-related, the addition of the individual component tolerances leads to an elastic axial tolerance allowance. This axial tolerance allowance can be up to 500 μm in the clamped status, according to implementation!

The axis/shaft/rod must be machined with at least h9-fit (or better) above h5. Deviations from the prescribed tolerance can lead to reduction of the stopping force, or functional failure.

Rod clamping

Clamp Versions

Rotational Clamping

The reliable protection against twisting

Reliable holding and securing against a rotation of a position are important elements in many production processes.

This task can be performed by means of the clamping elements of the Locked R family. The rotational clamps can, thanks to the patented spring steel plate system, transfer holding torques of up to 41,421 lbs to the shaft.

The spring accumulator can immediately clamp the axis during a power failure.

Function of clamping elements LOCKED R

The reinforced spring steel plate system transfers holding torques in the shortest possible time.

Released

The membrane filled with compressed air relaxes the spring steel plate system and releases the clamping ring. The shaft is free to move.

Engaged

The clamping force of the membrane/spring steel plates systems is transferred to the holding force of the clamping ring. The shaft is clamped.

Function of clamping elements LOCKED R-Z with additional air

If higher holding torques are required, the rotational clamps with an additional air function are used.

With the same size, significantly higher holding torques are achieved.

Engaged with additional air

By filling the outer membrane chamber with additional compressed air (58 or 87 psi), there is the possibility to increase the clamping force. The clamping element is engaged in this condition.

Clamping Elements

LOCKED PL

Process Clamping for Rail Systems
High clamping power for all rail profiles
Tool machines, Transport systems, Feeder installations,
Positioning tables

LOCKED PLK

Process Clamping for Rail Systems, Compact **High clamping power for all compact design rail profiles**Tool machines, Transport systems, Feeder installations,
Positioning tables

LOCKED SL

Safety Clamping for Rail Systems

Combined clamping and braking

Tool machines, Transport systems, Feeder installations,
Positioning tables

LOCKED SLK

Safety Clamping for Rail Systems, Compact **Combined compact design clamping and braking** Tool machines, Transport systems, Feeder installations, Positioning tables

LOCKED LZ-P

Rail Clamping for Z-Axes

Certified safety clamping

Z-axes, Vertical conveyor systems, Jacking applications

LOCKED PN

Pneumatic Rod Clamping

Rod clamping with maximum clamping force

Jacking systems, Light presses, Punching/stamping machines,

Stacking units

LOCKED PRK

Pneumatic Rod Clamping, Compact

Rod clamping with maximum clamping force in a compact size

Jacking systems, Light presses, Punching/stamping machines,

Stacking units

LOCKED R

Pneumatic Rotational Clamping

Strong holding force on the shaft

Drive shafts, Torque motors, Conveyor systems

Application Examples

SL

Special LOCKED SL elements for emergency stops

In order to secure the processing position of a special lathe in both the horizontal and the vertical axis, ACE LOCKED elements of the type SL35-1-6B are installed. They have the further advantage of preventing slippage through the vertical axis in the case of a malfunction. The products used in the SL-series not only have the correct track width and offer very high process clamping forces of up to 2,248 lbs, but can also apply the same force as an emergency-stop braking function. This is due to the specially integrated brake linings made of low-wear sintered metal.

ACE clamping and safety elements maintain a rock-solid hold on the axes in special lathes and secure the predetermined positions both horizontally and vertically

RASOMA Werkzeugmaschinen GmbH, 04720 Döbeln, Germany

SECUTE rail clamping

ACE clamping elements secure machines in the tyre industry. The goods accumulator/compensator of a material dispenser carries meandering, coiled, highly tear resistant material strips, which are fed at high speed to a tyre-manufacturing machine. To prevent damaging the machine, innovative type SLK25-1-6B clamping elements are employed.

Secure material accumulator

Application Examples

PN

Clamping elements as a variable stop

ACE clamping elements are inserted, as a variable stop, during a joining process for the production of drilling tools. They meet the requirements for a precise positioning of the workpiece head and an adaptation of the length tolerance of up to 0.12 in, ideally. ACE was awarded the contract because the clamping element is attached on a bar and its PN LOCKED series is specifically designed for this purpose. For clamping on linear guides, rails, axles and shafts, ACE offers a great range of high-performance models.

ACE clamping elements assist in the production of drilling tools: the LOCKED-P system clamps and at the same time absorbs the opposing forces of the joining process without difficulty GRAF automation GmbH, 88214 Ravensburg, Germany

PN

Secure rod clamping

Pneumatic rod clamping allows hydraulic presses to be used for any application. With the help of hydraulic presses, cut ceramic parts are manufactured during the week. So that the rods of the upper and lower stamping plate do not sag when the press is at a standstill over the weekend or during holidays and to avoid having to be setup again on the next working day, PN80-25-2-6B rod clamps are used.

Pneumatic rod clamping allows hydraulic presses to be used for any application

KOMAGE Gellner Maschinenfabrik KG, 54427 Kell am See, Germany

