UNIMOTION

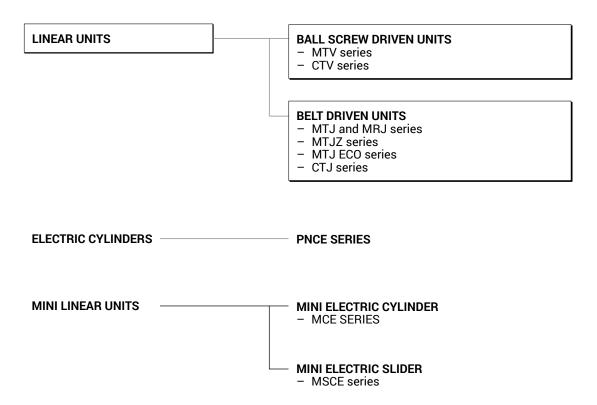
About Us

Our company was established in 1990 and, since then, it is privately owned. After 7 years of experience in metal processing as a contractor, the company Hypex (Unimotion) was created and operated in the following areas: special purpose machinery manufacture with its own development, trade and assembly in the area of industrial automation.

Due to many years of engineering and substantial engagement in individual problem solving processes, extensive knowledge and experience in the development and manufacture of linear and handling systems were gained. Today we produce mechanical linear units, compact linear units, multi-axis systems as well as customised solutions for high dynamic demands.

Our company's premises, which cover an area of 4500m², offer room for our 75 employees. Production, construction, administration and warehouse; all this can be found under one roof. Our modern machinery with CNC machining centres and CNC automatic lathes enables high-precision manufacture and really high in-house production depth. For example, we ourselves manufacture shaft drives with tooth washers and our screw ends. This is why, quality, reliability, a good price/performance ratio and short delivery times are harmonised to perfection.

Thus, in the production of our standard linear units as well as individual and complex special linear units, we can guarantee high capacity, flexibility and precision.


At the moment, we export our products in more than 30 countries. Inspired by our customers' demands, Hypex (Unimotion) constantly develops new products and system solutions. So you are welcome to contact us. We look forward to meet you and work on your special project!

Unimotion products

have the quality and
standards to meet
the requirements

of the modern market.

Unimotion Products

Table of Contents

	Overview
	1.000.0
	MTJ / MRJ
	2.000.0
	MTV
	3.000.0
	MTJ ECO
thomasson the state of the stat	4.000.0
	MTJZ
the state of the s	5.000.0
	СТЈ
thomas the state of the state o	6.000.0
	CTV
	7.000.0
	ACCESSORIES
	8.000.0
	SERVICE LIFE / PERMISSIBLE LOAD FACTOR

9.000.0

Overview

BELT DRIVEN LINEAR UNITS

MTJ / MRJ

DRIVE

GUIDE

MRJ

MTJ

FEATURES

- High speed
- High acceleration
- Large stroke lenghts
- Good repeatability

Linear Unit	Dynamic load capacity		Max. travel speed	1 Max. profile length	Max. repeatability	Dimensions			
	Cy [N]	Cz[N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]		
MTJ 40	4610		6	3000	± 0,08	40	52		
MTJ 65 S	9900		6	6000	± 0,08	65	85		
MTJ 65 L	19800		6	6000	± 0,08	65	85		
MTJ 80 S	17100		6	6000	± 0,08	80	100		
MTJ 80 L	34	200	6	6000	± 0,08	80	100		
MTJ 110 S	24	800	6	6000	± 0,08	110	129		
MTJ 110 L	49	600	6	6000	± 0,08	110	129		
MRJ 40	3400	1700	10	6000	± 0,08	40	52		
MRJ 65 L	8600	4400	10	6000	± 0,08	65	85		
MRJ 80 L	17100 9000		10	6000	± 0,08	80	100		
MRJ 110 L	31000 14000		10	6000	± 0,08	110	129		

¹ For lengths over the stated value in the table above please contact us. ² Profile

DRIVE

GUIDE

FEATURES

- High speed
- High acceleration
- Large stroke lenghts
- Good repeatability
- High load capabilities
- High flexural rigidity

Linear Unit	Dynamic load capacity	Max. travel speed	1 Max. profile length	Max. repeatability	Dimen	sions
	Cy [N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
CTJ 90 S	4620	5	6000	± 0,08	90	40
CTJ 90 L	9240	5	6000	± 0,08	90	40
CTJ 110 S	19800	6	6000	± 0,08	110	50
CTJ 110 L	39600	6	6000	± 0,08	110	50
CTJ 145 S	34200	6	6000	± 0,08	145	65
CTJ 145 L	68400	6	6000	± 0,08	145	65
CTJ 200 S	49600	6	6000	± 0,08	200	100
CTJ 200 L	99200	6	6000	± 0,08	200	100

¹ For lengths over the stated value in the table above please contact us.

MTJ ECO

Page 4.000.0

CTJ Page 6.000.0

DRIVE

GUIDE

FEATURES

- Excellent price/performance ratio
- High acceleration
- Large stroke lenghts

Linear Unit	Dynamic I	load capacity	Max. travel speed	¹ Max. profile length	Max. repeatability	Dimen	sions
	Cy [N]	Cz [N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]
MTJ 40 ECO S	99	900	3	5960	± 0,1	40	78
MTJ 40 ECO L	19	19800		5960	± 0,1	40	78

¹ For lengths over the stated value in the table above please contact us. ³ Profile + carriage

³ Profile + carriage

BELT DRIVEN LINEAR UNITS

MTJZ

DRIVE

GUIDE

FEATURES

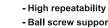
- High speed
- High acceleration
- Large stroke lenghts
- Good repeatability

Linear Unit	Dynamic I	oad capacity	Max. travel speed	1 Max. profile length	Max. repeatability	Dimensions		
	Cy[N] Cz[N]		[m/s]	[mm] [mm]		² Width [mm]	³ Height [mm]	
MTJZ 40	46	10	5	3000	± 0,08	40	88	
MTJZ 65	198	800	5	6000	± 0,08	65	143,5	
MTJZ 80	34200		5	6000	±0,08	80	178,5	
MTJZ 110	496	600	5	6000	± 0,08	110	241	

¹ For lengths over the stated value in the table above please contact us. ² Profile ³ Profile + carriage

BALL SCREW DRIVEN LINEAR UNITS

MTV Page 3.000.0



GUIDE

FEATURES

- Ball screw support system for higher speeds at the same stroke
- High axial load capabilities
- Large stroke lenghts

Linear Unit	Dynamic Ic	oad capacity	Max. travel speed	1 Max. profile length	Max. repeatability	Dimensions		
	Cy[N] Cz[N]		[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]	
MTV 40	462	20	0,97	2920	± 0,01	40	52	
MTV 65	198	00	1,12	2920	± 0,01	65	85	
MTV 80	34200		2,5	5480	± 0,01	80	100	
MTV 110	49600		1,6	5850	± 0,01	110	129	

¹ For lengths over the stated value in the table above please contact us. ² Profile + carriage

DRIVE

GUIDE

FEATURES

- High repeatability
- High load capabilities
- High flexural rigidity

Linear Unit	Dynamic load capacity	Max. travel speed	¹ Max. profile length	Max. repeatability	Dimensions		
	Cy[N] Cz[N]	[m/s]	[mm]	[mm]	² Width [mm]	³ Height [mm]	
CTV 90 S	4620	0,97	750	± 0,01	90	40	
CTV 90 L	9240	0,97	750	± 0,01	90	40	
CTV 110 S	19800	1,12	1500	± 0,01	110	50	
CTV 110 L	39600	1,12	1500	± 0,01	110	50	
CTV 145 S	34200	2,5	1800	± 0,01	145	65	
CTV 145 L	68400	2,5	1800	± 0,01	145	65	
CTV 200 S	49600	1,6	2200	± 0,01	200	100	
CTV 200 L	99200	1,6	2200	± 0,01	200	100	

² Profile ³ Profile + carriage ¹ For lengths over the stated value in the table above please contact us.

MTJ / MRJ

CHARACTERISTICS

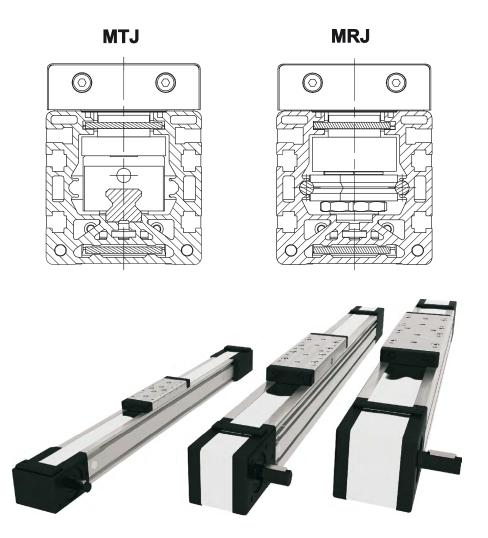
MTJ and **MRJ** Linear Units with toothed belt drive and compact dimensions provide high performance features such as, high speed, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

For very high speeds, up to 10m/s, the Track Rollers (journal Bearings) of the type MRJ are particularly suitable.

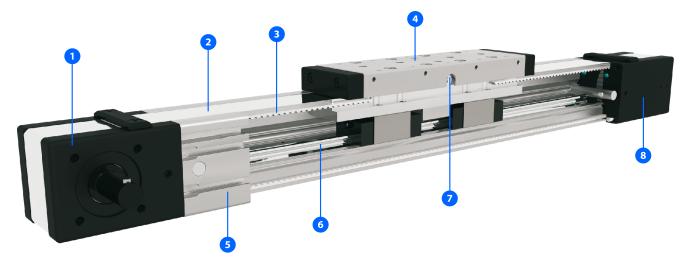

In the Linear Units MTJ and MRJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations. As optional, a corrosion-resistant protection strip is available.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

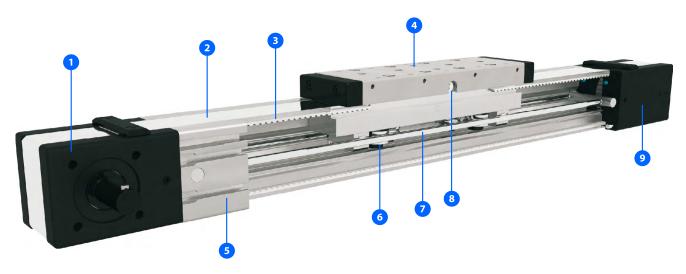
Different carriage lengths with central lubrication port, allow easy re-lubrication of the Linear Unit and allow the possibility to attach additional accessories on the side.

For the Linear Units MTJ and MRJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



1 The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm


STRUCTURAL DESIGN

MTJ Series

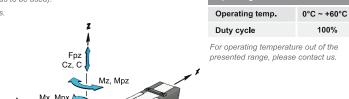
- 1 Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- 3 AT polyurethane toothed belt with steel tension cords
- 4 Carriage; with built in Magnets
- **5 -** Aluminium profile-Hard anodized
- 6 Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 Tension End with integrated belt tensioning system

MRJ Series

- 1 Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- **3 -** AT polyurethane toothed belt with steel tension cords
- 4 Carriage; with build in Magnets
- 5 Aluminium profile-Hard anodized
- 6 Track Roller (journal Bearing)
- 7 Two hardened steel Round guide (58/60 HRC)
- 8 Central lubrication port; both sides
- 9 Tension End with integrated belt tensioning system

HOW TO ORDER

	MTJ -	65	- 700	- L2	- 250 -	10R -	1
Series:							
MRJ							
MTJ							
Size:							
40							
65							
80							
110							
Absolute stroke [mm] : (Absolute stroke = Effective stroke + 2 x Sat							
Carriage Version :							
S: Short (only for MTJ series)							
L: Long							
Leave blank: For MRJ 40, MTJ 40							
Number of carriages :							
The stated number specifies the number of				rriages avalia	ble)		
Leave blank : For the case of one carriage	Ü		、 1	J	,		
Distance between two carriages [mm] :							
Leave blank : For the case of one carriage							
Type of drive pulley :							
0: Pulley with through hole							
1: Pulley with journal (with Keyway)							
10 : Pulley with journal (without Keyway)							
2: Pulley with journal on both sides (with h	(eyway)						
20 : Pulley with journal on both sides (without	ut Keyway)						
3: Without drive unit							
Drive journal position :							
L : Journal on left side							
R : Journal on right side							
Leave blank : For type of drive pulley 0, 2,	20 and 3						
Duetastien seven							
Protection cover: 0: In profile groove guided Polyurethane too	othed halt						
• In prome groove guided Folydremane to	ouied bell						


1 : Corrosion-resistant protection strip

General technical data

Linear Unit	Carriage length		Dynamio ad capao		i Dynamic moment			Max. permissible loads Forces Moments			Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke		
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
MTJ 40	92	4610	1	1	28	90	90	3850	3850	14	75	75	0,28	± 0,08	3000	2876	25
MRJ 40	92	1	3400	1700	20	21	25	1015	1090	13	14	7,6	0,26	± 0,08	6000	5876	0

 f^* For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

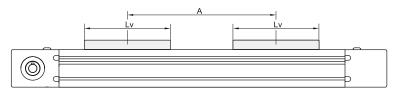
^{**}For minimum stroke below the stated value in the table above please contact us.

Fpy Cy, C

Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity:

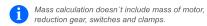

 $E = 70000 \text{ N} / \text{mm}^2$

Linear	Carriage	Dyna	amic load c	apacity	* Dynamic moment				* Max. permissible loads				
Unit	version							For	rces		Moments		
		C[N]	Cy[N]	Cz[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	
MTJ 40	2	9220	1	1	57	4,6 × A	4,6 × A	7690	7690	28	3,8 × A	3,8 × A	
MRJ 40	2	1	6800	3400	40	1.7 × A	3.4 × A	2030	2180	26	1,1 × A	1.0 × A	

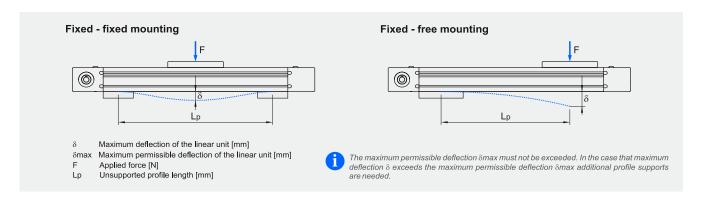
 $^{^{}f *}$ A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

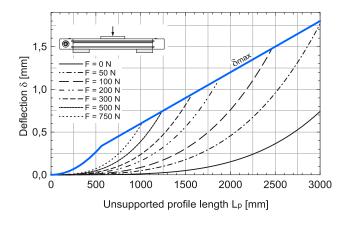
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque With Without strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm/rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MTJ 40	6	3,7	0,4 × nc 0,2 × nc	99	31,51	AT 3	20	235	225000	70
MRJ 40	10	0,1	0,4 × nc 0,2 × nc		31,31	AIS	20	233	223000	70

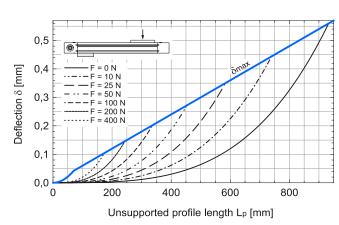

^{*}Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively. For travel speed and acceleration over the stated value in the table above please contact us.

^{**} The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

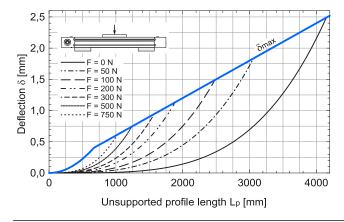

Mass and mass moment of inertia

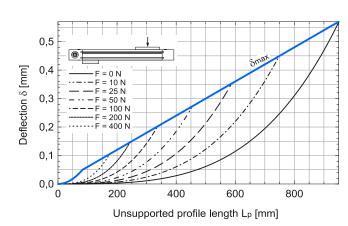
Linear Unit	* Mass of linear unit	* Mass moment of inertia	Planar moment of inertia		
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]	
MTJ 40	1,3 + 0,0024 × (Abs. stroke + (nc - 1) × A) + 0,28 × (nc - 1)	9,7 + 0,0035 × (Abs. stroke + (nc - 1) × A) + 7,0 × (nc - 1)	9.8	11,6	
MRJ 40	1,25 + 0,0022 × (Abs. stroke + (nc - 1) × A) + 0,26 × (nc - 1)	9,3 + 0,0035 × (Abs. stroke + (nc - 1) × A) + 6,5 × (nc - 1)	9,0	11,0	


^{*}Absolute stroke [mm]

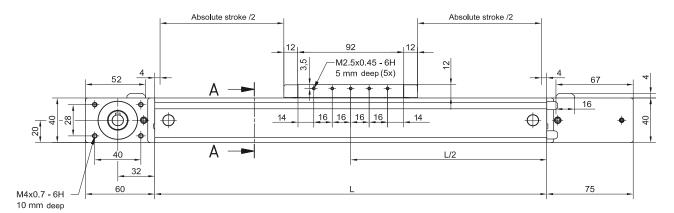


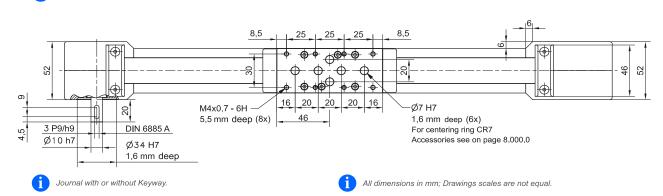
Deflection of the linear unit



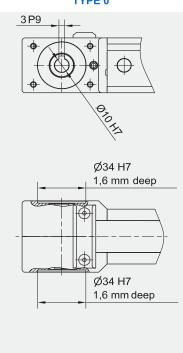

MTJ 40

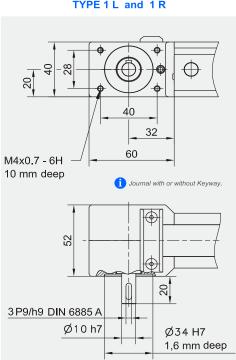
MRJ 40

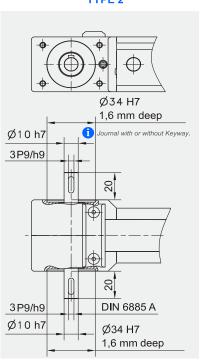



A - Distance between carriages [mm]. More info on following pages.

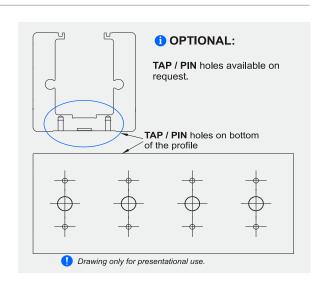
nc - Number of carriages


Absolute stroke = Effective stroke + 2 x Safety stroke

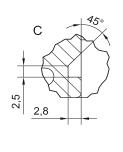

Lifetime lubricated!



TYPE 1 L and 1 R



TYPE 2



MTJ 40 A-A 39,5 B C REED switch 40

MRJ 40

A-A 39,5 B 40 C

3,4

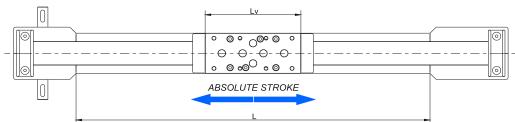
5,4

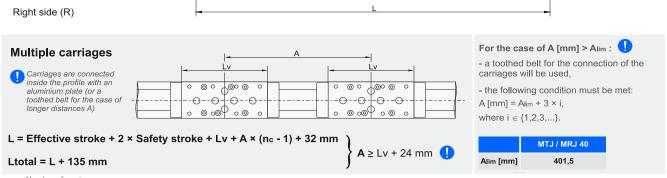
All dimensions in mm; Drawings scales are not equal.

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.


Defining of the linear unit length

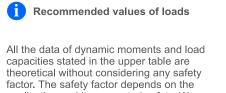

L = Effective stroke + 2 × Safety stroke + Lv + 32 mm

Lv = 92 mm

Ltotal = L + 135 mm

Left side (L)

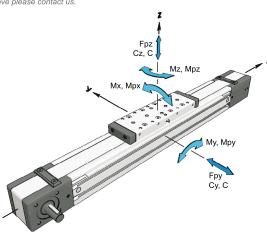
nc - Number of carriages


General technical data

Linear Unit	Carriage length		Dynamic ad capac			Oynamic moment		Max. permissible loads Forces Moments			Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke		
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	L _{max} [mm]	[mm]	[mm]
MTJ 65 S	140	9900	1	1	79	59	59	3270	5100	34	34	34	1,00	± 0,08		5820	40
MTJ 65 L	190	19800	1	1	158	1025	1025	6540	10190	60	530	340	1,45	± 0,08	6000	5770	40
MRJ 65 L	190	1	8600	4400	74	186	425	1920	1470	25	62	95	1,31	± 0,08		5770	0

^{*}For lengths / stroke over the stated value in the table above please contact us.

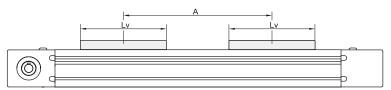
Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).


^{***}For minimum stroke below the stated value in the table above please contact us.

application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity:

 $E = 70000 \text{ N} / \text{mm}^2$


For operating temperature out of the presented range, please contact us.

General technical data for double carriage

Linear	Carriage	Dyna	mic load ca	apacity	*	Dynamic momen	t	*		Max. permi	ssible loads	
Unit	version							For	ces		Moments	
		C[N]	Cy[N]	Cz[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz[N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
MTJ 65	S2	19800	1	1	158	9,9 × A	9,9 × A	6540	10190	68	5,1 × A	3,3 × A
MTJ 65	L2	39600	1	1	316	19,8 × A	19,8 × A	13080	20380	120	10,2 × A	6,5 × A
MRJ 65	L2	1	17200	8800	148	4,4 × A	8,6 × A	3850	2940	50	1,5 × A	1,9 × A

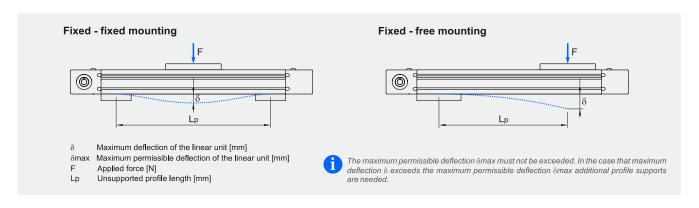
^{*}A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

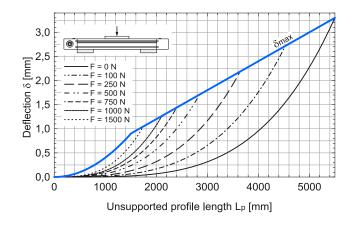
Drive and belt data

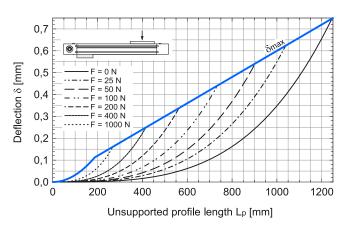
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque With Without strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm/rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MTJ 65 S			1,1 × nc 0,8 × nc							
MTJ 65 L	6	13,1	1,2 × nc 0,9 × nc	165	52,52	AT 5	32	500	600000	70
MRJ 65 L	10		1,0 × nc 0,7 × nc							

^{*}Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively. For travel speed and acceleration over the stated value in the table above please contact us.

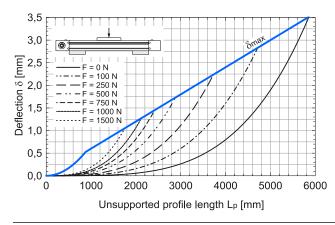

^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

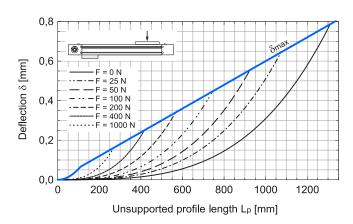
Mass and mass moment of inertia

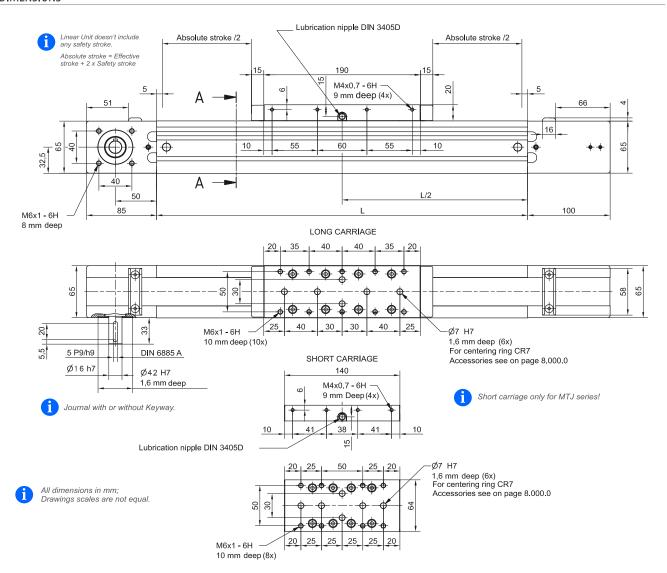

Linear Unit	* Mass of linear unit	* Mass moment of inertia	Planar m ine	oment of rtia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]
MTJ 65 S	4,0 + 0,0055 × (Abs. stroke + (nc - 1) × A) + 1,00 × (nc - 1)	98,4 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 69,0 × (nc - 1)		
MTJ 65 L	4,6 + 0,0055 × (Abs. stroke + (nc - 1) × A) + 1,45 × (nc - 1)	130,1 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 100,0 × (nc - 1)	59,7	74,4
MRJ 65 L	4,3 + 0,0047 × (Abs. stroke + (nc - 1) × A) + 1,31 × (nc - 1)	120,4 + 0,0154 × (Abs. stroke + (nc - 1) × A) + 90,3 × (nc - 1)		



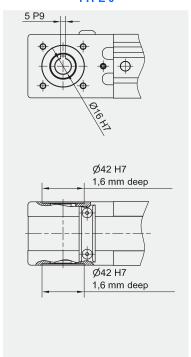
Deflection of the linear unit

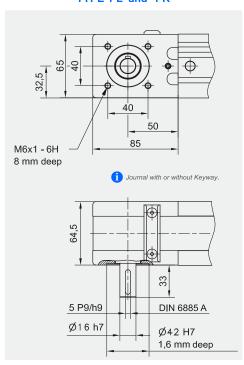


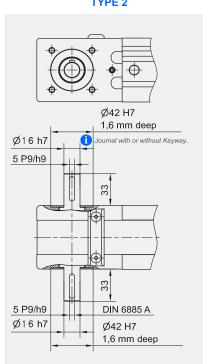

MTJ 65

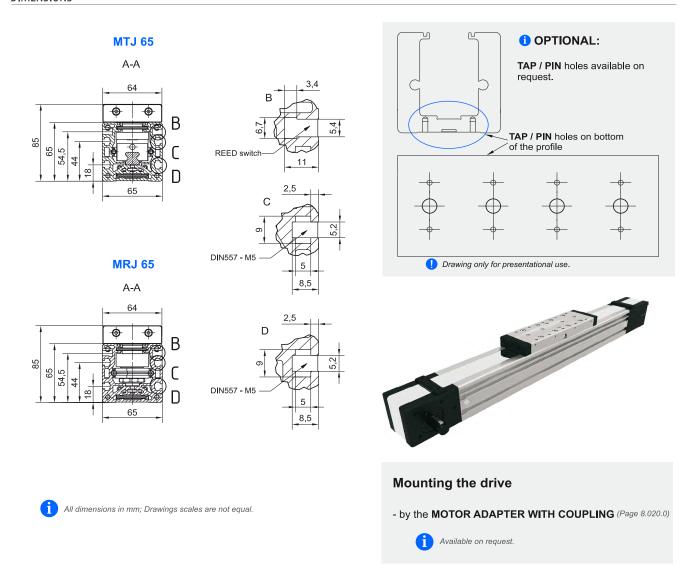


MRJ 65

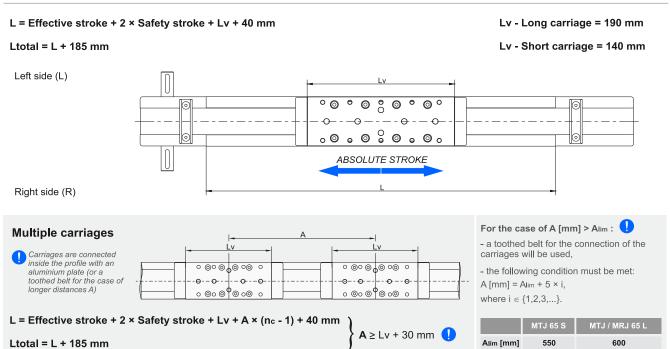




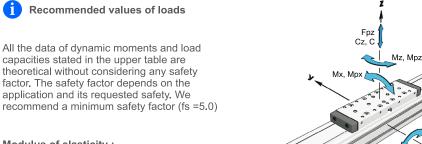

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages



TYPE 0 TYPE 1 L and 1 R TYPE 2



Defining of the linear unit length

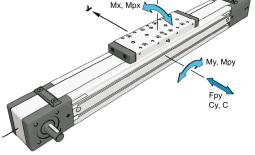

General technical data

Linear Unit	Carriage length		Dynamic ad capac			Dynamic moment		For		permissil	ole loads Momen		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	L _{max} [mm]	[mm]	[mm]
MTJ 80 S	170	17100	1	1	185	130	130	4470	7530	110	122	100	1,72	± 0,08		5788	55
MTJ 80 L	260	34200	1	1	370	2565	2565	8930	15060	150	1130	670	2,72	± 0,08	6000	5698	55
MRJ 80 L	260	1	17100	9000	198	511	1145	3400	1760	39	101	228	2,73	± 0,08		5698	0

 $^{^{}f *}$ For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

^{***}For minimum stroke below the stated value in the table above please contact us.

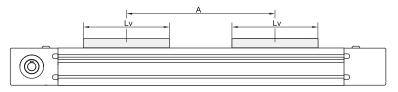


Operating temp. 0°C ~ +60°C Duty cycle

For operating temperature out of the presented range, please contact us.

Modulus of elasticity:

 $E = 70000 \text{ N} / \text{mm}^2$



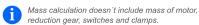
General technical data for double carriage

Linear	Carriage	Dyna	mic load ca	apacity	* Dynamic moment			* Max. permissible loads					
Unit	version							Forces			Moments		
		C[N]	Cy [N]	Cz[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	
MTJ 80	S2	34200	1	1	370	17,1 × A	17,1 × A	8930	15060	220	7,5 × A	4,5 × A	
MTJ 80	L2	68400	1	1	740	34,2 × A	34,2 × A	17860	30130	300	15,1 × A	8,9 × A	
MRJ 80	L2	1	34200	18000	396	9,0 × A	17,1 × A	6800	3530	78	1,8 × A	3,4 × A	

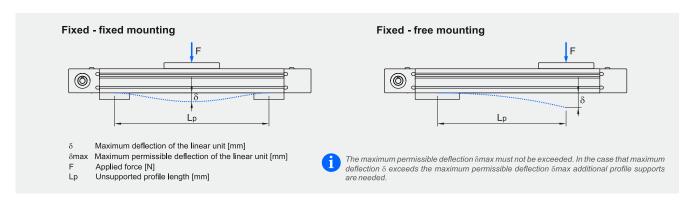
 $^{^{}f *}$ A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

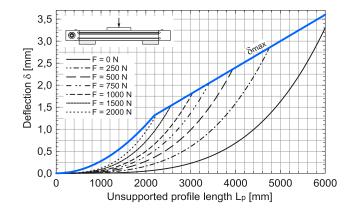
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque With strip Without strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MTJ 80 S			1,5 × nc 1,2 × nc							
MTJ 80 L	6	29,4	1,7 × nc 1,4 × nc	210	66,84	AT 5	50	880	960000	70
MRJ 80 L	10		1,4 × nc 1,1 × nc							

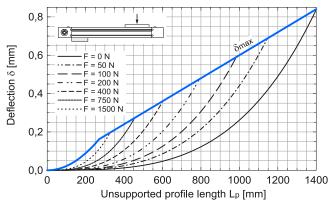

^{*}Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s², respectively. For travel speed and acceleration over the stated value in the table above please contact us.

^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

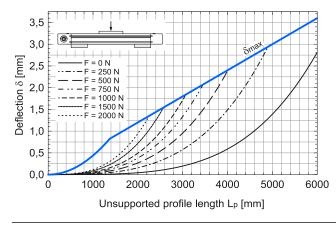

Mass and mass moment of inertia

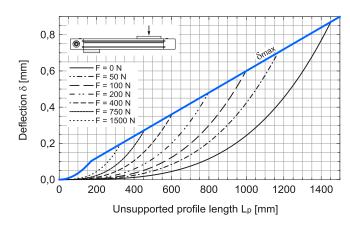
Linear Unit	* Mass of linear unit	* Mass moment of inertia	Planar m ine	
	[kg]	[10 ⁻⁵ kg m²]	ly [cm ⁴]	lz [cm ⁴]
MTJ 80 S	6,8 + 0,0085 × (Abs. stroke + (nc - 1) × A) + 1,72 × (nc - 1)	310,6 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 192,1 × (nc - 1)		
MTJ 80 L	8,4 + 0,0085 × (Abs. stroke + (nc - 1) × A) + 2,72 × (nc - 1)	423,3 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 303,8 × (nc - 1)	129,1	173,4
MRJ 80 L	8,2 + 0,0075 × (Abs. stroke + (nc - 1) × A) + 2,73 × (nc - 1)	424,4 + 0,0391 × (Abs. stroke + (nc - 1) × A) + 304,9 × (nc - 1)		

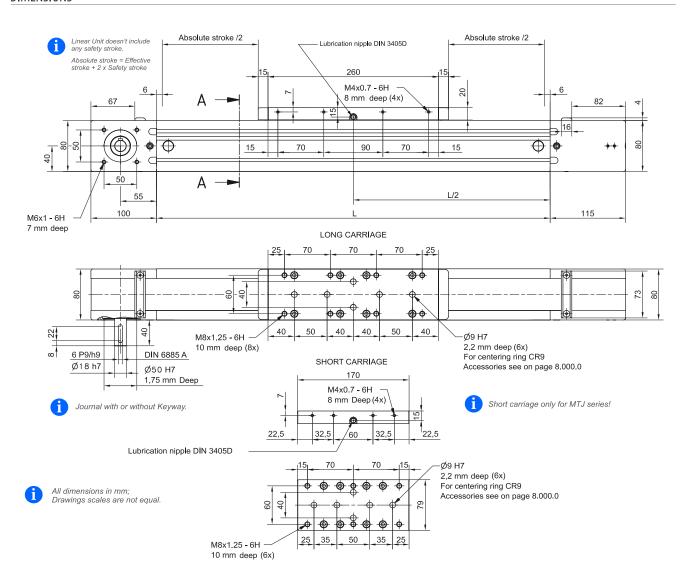

^{*}Absolute stroke [mm]

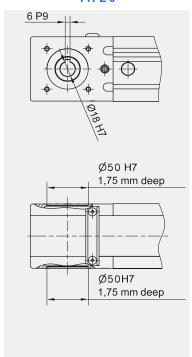


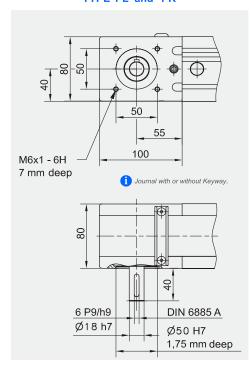
Deflection of the linear unit

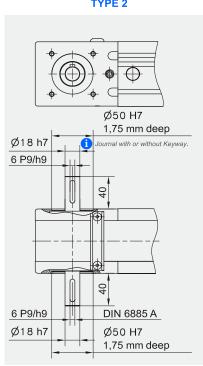


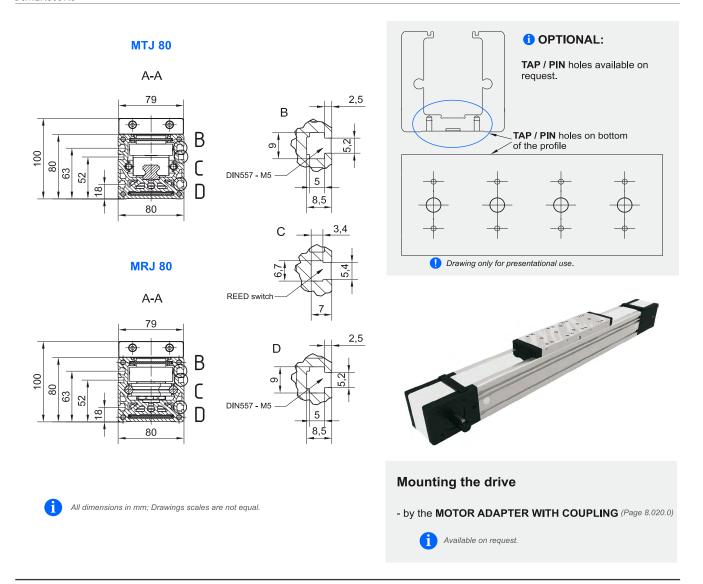

MTJ 80


MRJ 80

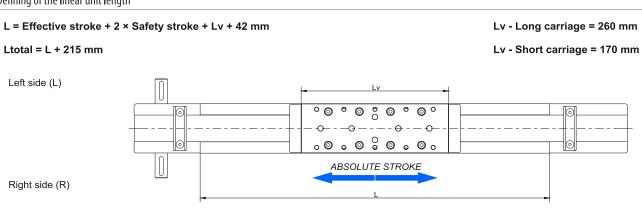


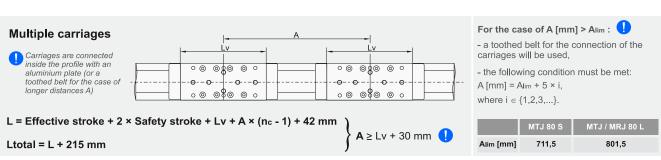

A - Distance between carriages [mm]. More info on following pages.


nc - Number of carriages

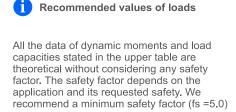


TYPE 0 TYPE 1 L and 1 R TYPE 2



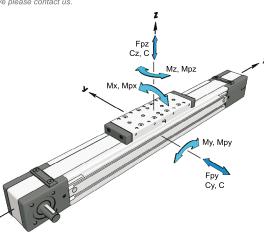


Defining of the linear unit length


General technical data

Linear Unit	Carriage length	i lo:	Dynamic ad capac			Dynamic moment		For	Max. p	permissil	ole loads Momer		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C [N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	L _{max} [mm]	[mm]	[mm]
MTJ 110 S	240	24800	1	1	315	220	220	5000	10130	135	180	100	3,25	± 0,08		5748	65
MTJ 110 L	330	49600	1	1	630	3840	3840	10000	20260	295	1570	775	4,61	± 0,08	6000	5658	65
MRJ 110 L	330	1	31000	14000	406	877	2325	6200	3410	99	214	465	4,78	± 0,08		5658	0

^{*}For lengths / stroke over the stated value in the table above please contact us.


Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

^{**}For minimum stroke below the stated value in the table above please contact us.

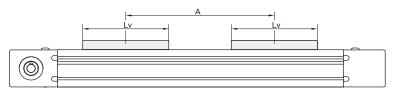
Modulus of elasticity:

 $E = 70000 \text{ N} / \text{mm}^2$

Operating conditions

Operating temp. 0°C ~ +60°C

Duty cycle 100%


For operating temperature out of the presented range, please contact us.

General technical data for double carriage

Linear	Carriage	Dyna	amic load ca	apacity	*	Dynamic momen	t	*		Max. permi	issible loads	
Unit	version						Forces		rces		Moments	
		C[N]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
MTJ 110	S2	49600	1	1	630	24,8 × A	24,8 × A	10000	20260	270	10,1 × A	5,0 × A
MTJ 110	L2	99200	1	1	1260	49,6 × A	49,6 × A	20000	40520	590	20,3 × A	10,0 × A
MRJ 110	L2	1	62000	28000	812	14,0 × A	31,0 × A	12400	6830	198	3,4 × A	6,2 × A

^{*}A - Distance between carriages [mm]. More info on following pages.

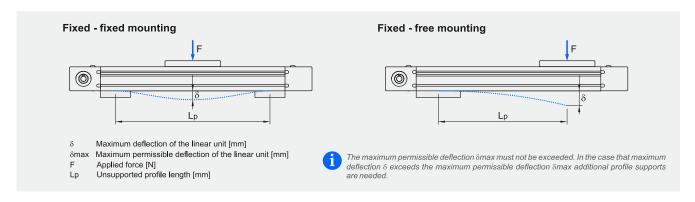
Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Drive and belt data

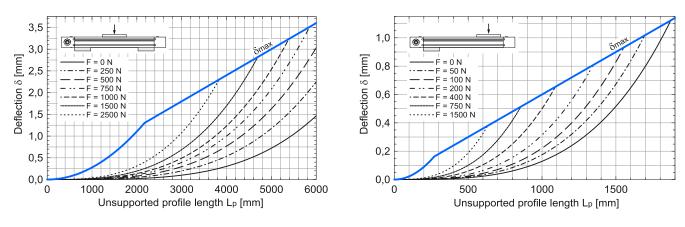
Linear Unit	* Max. travel speed	Max. drive torque Ma	** No load torque With strip Without strip	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	* Max. acceleration
	[m/s]	[Nm]	[Nm] [Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
MRJ 110 L	10	68,5	2,2 × nc 2,0 × nc							
MTJ 110 S	6	with Keyway 82.6	2,2 × nc 2,0 × nc	300	95,49	AT 10	50	1730	2145000	70
MTJ 110 L	Ü		2,7 × nc 2,3 × nc							

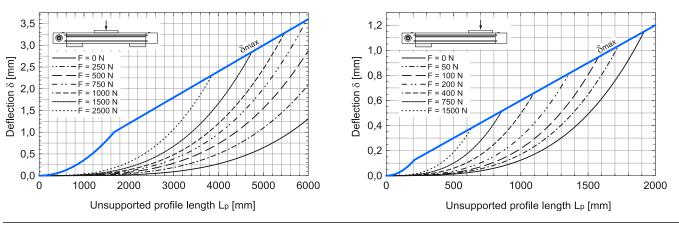
^{*}Max. travel speed and max. acceleration of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s and 50 m/s² respectively. For travel speed and acceleration over the stated value in the table above please contact us.

^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

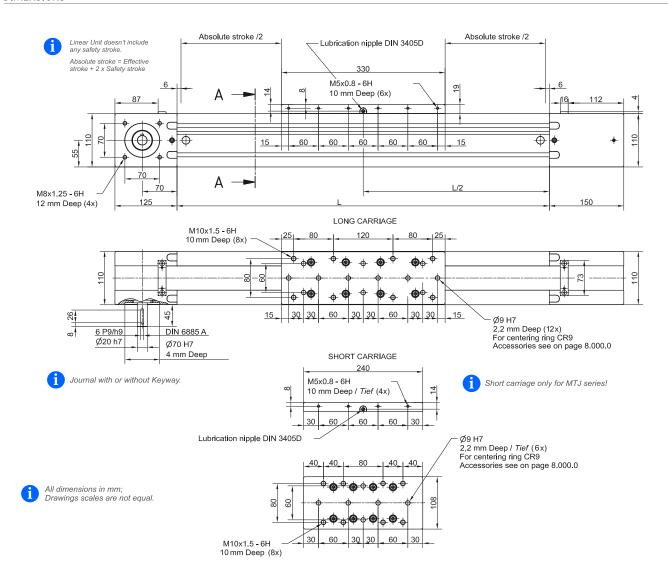

Mass and mass moment of inertia

Linear Unit	* Mass of linear unit	* Mass moment of inertia	Planar m ine	oment of rtia
	[kg]	[10 ⁻⁵ kg m²]	ly [cm ⁴]	lz [cm ⁴]
MTJ 110 S	15,0 + 0,015 × (Abs. stroke + (nc - 1) × A) + 3,25 × (nc - 1)	1065,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 741,9 × (nc - 1)		
MTJ 110 L	17,7 + 0,015 × (Abs. stroke + (nc - 1) × A) + 4,61 × (nc - 1)	1381,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 1050,9 × (nc - 1)	513,0	620,0
MRJ 110 L	16,3 + 0,0133 × (Abs. stroke + (nc - 1) × A) + 4,78 × (nc - 1)	1420,0 + 0,137 × (Abs. stroke + (nc - 1) × A) + 1089,6 × (nc - 1)		

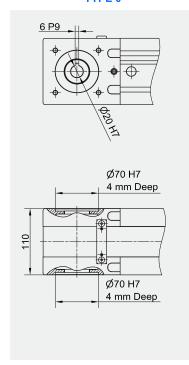

^{*}Absolute stroke [mm]

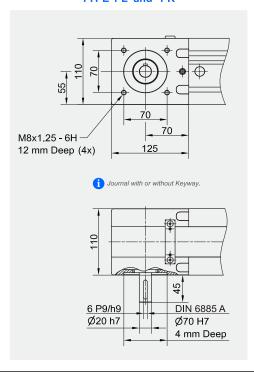

Deflection of the linear unit

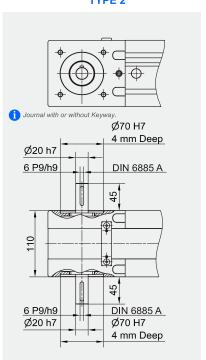
MTJ 110

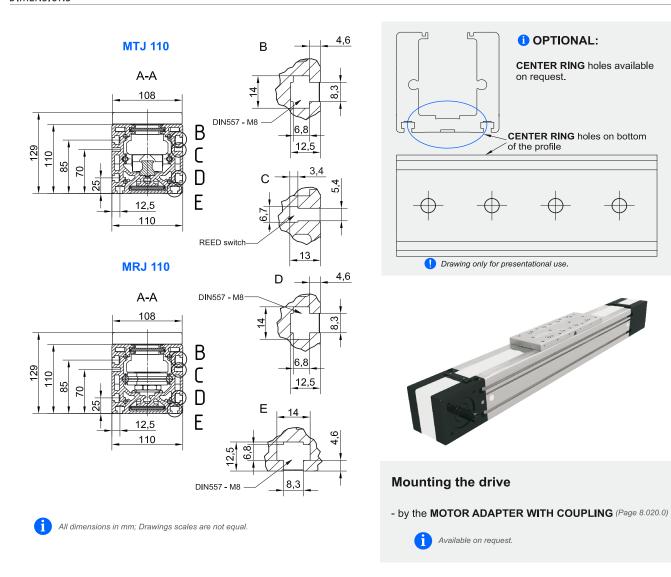


MRJ 110

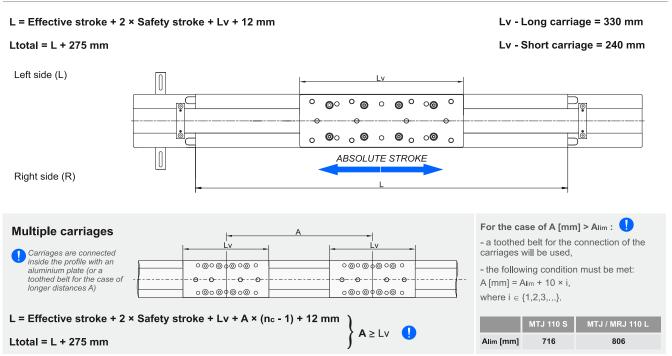



A - Distance between carriages [mm]. More info on following pages.


nc - Number of carriages



TYPE 0 TYPE 1 L and 1 R TYPE 2



Defining of the linear unit length

CHARACTERISTICS

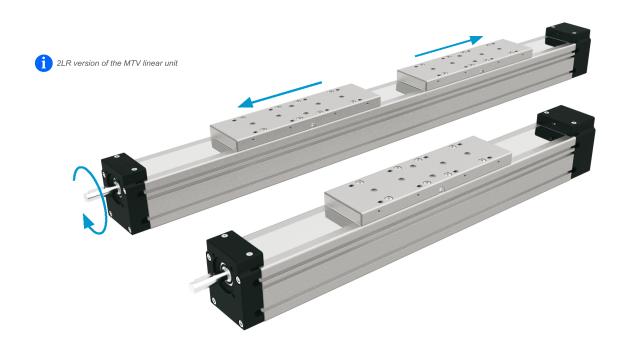
The **MTV** series describes Linear Units with precision ball screw drive, integrated guide rail and compact dimensions. They provide high performances features, such as high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the Linear Units MTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.

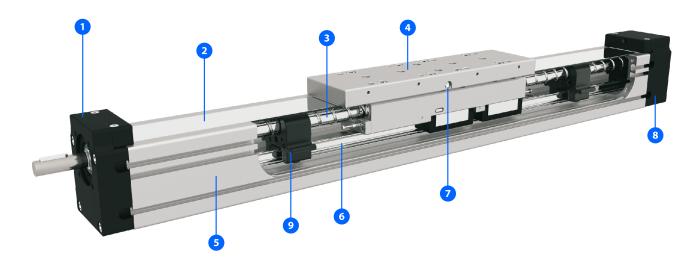

A corrosion-resistant protection strip, protects all the parts in the profile from dust and other contaminants. The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

The carriage, with central lubrication port, allows easy central re-lubrication of ball screw and Ball rail guide and provides the possibility to attach additional accessories on the side.

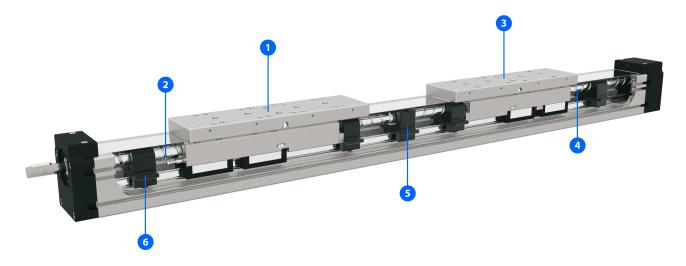
For the Linear Units MTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

To achieve higher speeds at the same stroke of the linear unit, the ball screw support system can be integrated. With this feature vibrations and deflections of the ball screw are reduced, therefore longer strokes are possible. The linear unit with integrated support system can have a higher axial load capacity. Ball screw supports are made out of high quality plastic materials with high wear resistance properties. Our system enables ball screw support in horizontal or vertical positioning of the linear unit.

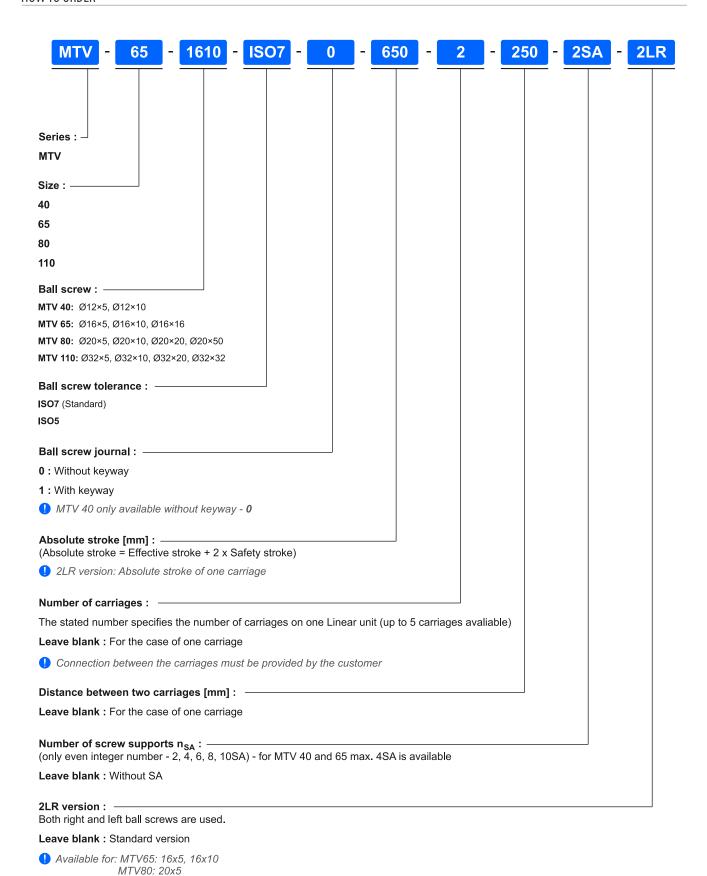
A 2LR version of MTV linear unit is available, where two carriages are moving simultaneously in opposite directions. Both right and left handed precision ball screws are used, which are rigidly connected. The ball screw support system can also be integrated.



The aluminium profiles are manufactured according to the medium EN 12020-2 standard


Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

Standard version


- 1 Drive block with floating bearing (MTV 110 fixed bearing)
- 2 Corrosion-resistant protection strip
- 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- 5 Aluminium profile-Hard anodized6 Integrated Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 End block with fixed bearing (MTV 110 floating bearing)
- 9 Screw support SA

2LR version

- 1 Carriage; with build in right hand ball nut
- 2 Right hand ball screw
- 3 Carriage; with build in left hand ball nut
- 4 Left hand ball screw
- 5 Central screw support fixed
- 6 Screw support SA

HOW TO ORDER

General technical data

Linear Unit	Carriage length	i Dynamic Load capacity	① Dynamic moment		Max. permissible loads Forces Moments			* Max. length	* Max. stroke			
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	M _{py} [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 40	150	4620	28	260	260	2300	3850	23	210	130	2900	2728

*For lengths / stroke over the stated value in the table above please contact us.

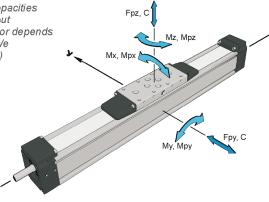
Values for max. stroke are not valid for multiple carriages and screw support SA
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions

Operating temp. 0°C ~ +60°C

Duty cycle 100%

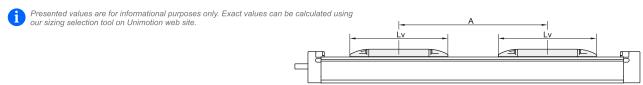
For operating temperature out of the


presented range, please contact us.

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity

Recommended values of loads:


 $E = 70000 \text{ N/mm}^2$

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	* Max. permissible loads					
	carriages	Load capacity				For	ces		Moments	
						Fpy	Fpz	Мрх	Мру	Mpz
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 40	2	9240	56	4,6 × A	4,6 × A	4600	7690	46	3,8 × A	2,3 × A

*A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	1 Max. travel speed	Lead constant	prec	eatability ision m]	Dynamic load capacity BS	Max. axial load	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m/s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
MTN/ 44	12 × 5	5800	0,49	5	± 0,02	± 0,01	5000	3400	3,0	30	20
MTV 40	12 × 10	2000	0.97	10	± 0.02	± 0.01	3800	2540	4.5	30	20

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

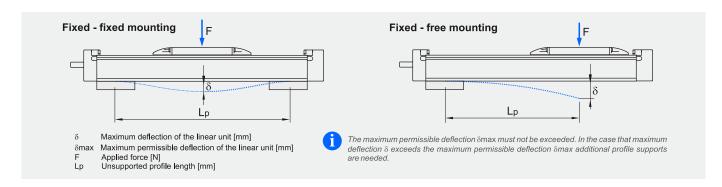
Planar moment of inertia

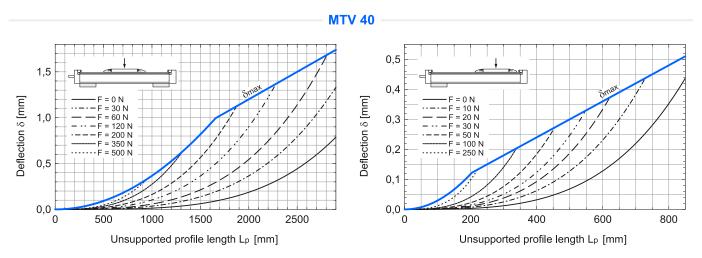
Linear Unit	Planar moment of inertia						
	ly [cm ⁴]	Iz [cm ⁴]					
MTV 40	10,0	11,0					

 $^{^{\}mathbf{2}}$ For the ball nut with the preload of 2%, please contact us.

³ With SA version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.


Mass, moved mass, mass moment of inertia and no load torque

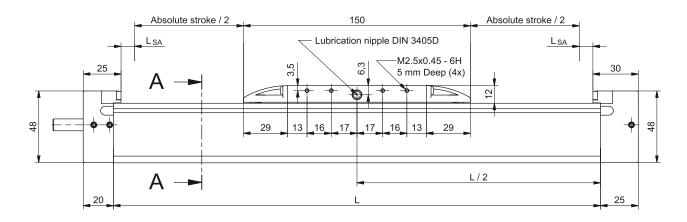

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)
	12 × 5 MTV 40	2	1,3 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,50 + 0,47 × (nc - 1)
MTV		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)
40		0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)
	12 × 10	2	$1,3 + 0,0028 \times (Abs. stroke + (nc - 1) \times A) + 0,47 \times (nc - 1)$	0,50 + 0,47 × (nc - 1)
		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)

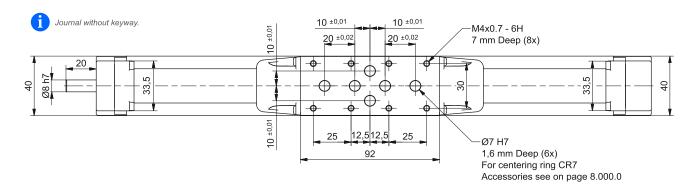
Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
	[d×I]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	0,48 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,08 + 0,08 × (nc - 1)
12 × 5	12 × 5	2	0,53 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,09 + 0,08 × (nc - 1)
		4	0,57 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,10 + 0,08 × (nc - 1)
40		0	$0.57 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,09 + 0,09 × (nc - 1)
	12 × 10	2	$0.62 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,11 + 0,09 × (nc - 1)
		4	$0.67 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,14 + 0,09 × (nc - 1)

^{*}Absolute stroke [mm]

Deflection of the linear unit

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


A - Distance between carriages [mm]. More info on following pages.


nc - Number of carriages

^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

Linear Unit doesn't include any safety

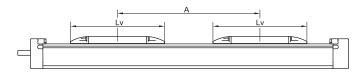
Absolute stroke = Effective stroke + 2 x Safety stroke stroke.

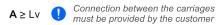
n_{SA}	L_{SA}
0	6,0
2SA	23,0
4SA	40,0

SA 23,0
SA 40,0

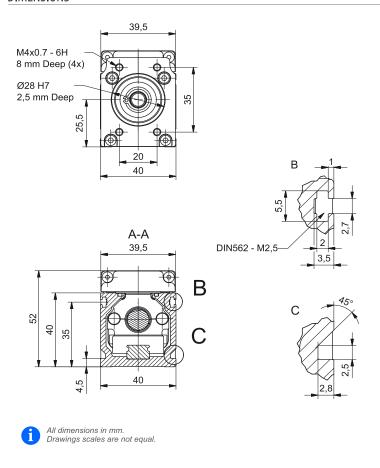
All dimensions in mm;
Drawlings scales are not equal.

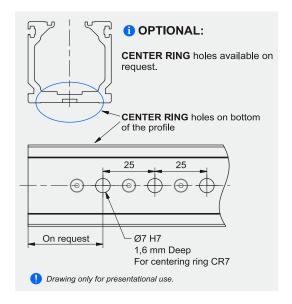
L_{sa} Additional length [mm]


Defining of the linear unit length

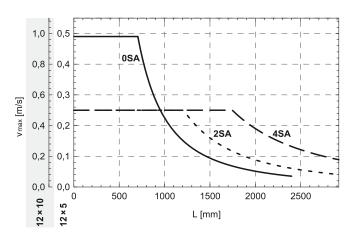

L = Effective stroke + 2 \times Safety stroke + Lv + 2 \times LsA + A \times (nc - 1) + 10 mm

Ltotal = L + 45 mm, Lv = 150 mm




Multiple carriages

nc - Number of carriages



Mounting the drive

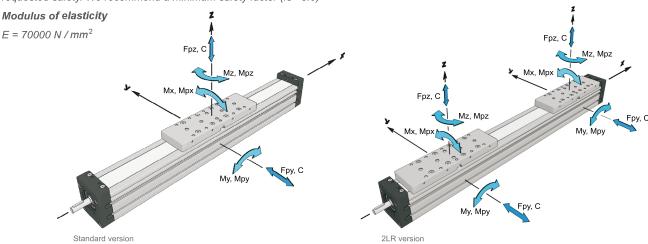
- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)
 - Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

General technical data

Linear Unit	Carriage length	i Dynamic Load capacity	(i) D)	Dynamic moment Fo			Max. permissible loads Forces Moments				* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 65	220	19800	158	700	700	6540	10190	94	350	233	2920	2690
MTV 65 2LR	220	19800	158	700	700	6540	10190	94	350	233	5789	2667

^{*}For lengths / stroke over the stated value in the table above please contact us.


Values for max. stroke are not valid for multiple carriages and screw support SA
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions Operating temp. 0°C ~ +60°C Duty cycle 100%

For operating temperature out of the presented range, please contact us.

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs = 5.0)

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	nent	*	Max	c. permissib l e	loads	
	carriages	Load capacity				For	ces		Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
MTV 65 / MTV 65 2LR	2	39600	316	19,8 × A	19,8 × A	13070	20380	188	10,2 × A	6,5 × A
A - Distance between ca Presented values a		More info on follo tional purposes o otion web site.		es can be calcula	ited using	- Lv	A	-	Lv	

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	prec	eatability ision im]	Dynamic load capacity BS	⁵ Max. axial load	Max. drive torque	⁴ Min. stroke	Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	16 × 5		0,35	5	± 0,02	± 0,01	13150	8700	5,5 with Keyway 7,7 without Keyway		
MTV 65 MTV 65 2LR	16 × 10	4200	0,70	10	± 0,02	± 0,01	11550	6730	5,5 with Keyway	40	20
	16 × 16		1,12	16	± 0,02	± 0,01	8170	4200	11,9 without Keyway		

¹ Max, travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

 $^{^{\}mathbf{2}}$ For the ball nut with the preload of 2%, please contact us.

 $^{^{3}}$ With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

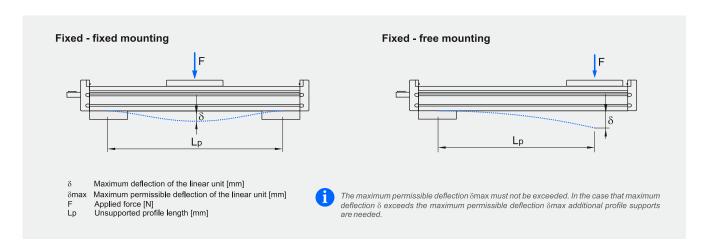
Mass, moved mass, mass moment of inertia and no load torque

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	$4.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,50 + 1,50 × (nc - 1)
	16 × 5	2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
		4	$5.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,66 + 1,50 × (nc - 1)
	16 × 5	0	$7.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	2LR version	2	$8,2 + 0,0146 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,16 + 3,00 × (nc - 1)
		4	$9.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,32 + 3,00 × (nc - 1)
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
MTV 65	16 × 10	2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
65		4	$5.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,66 + 1,50 × (nc - 1)
		0	7,2 + 0,0146 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	16 × 10 2LR version	2	$8,2 + 0,0146 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,16 + 3,00 × (nc - 1)
	ZEIN VOISION	4	$9.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,32 + 3,00 × (nc - 1)
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
	16 × 16	2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
		4	5,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,66 + 1,50 × (nc - 1)

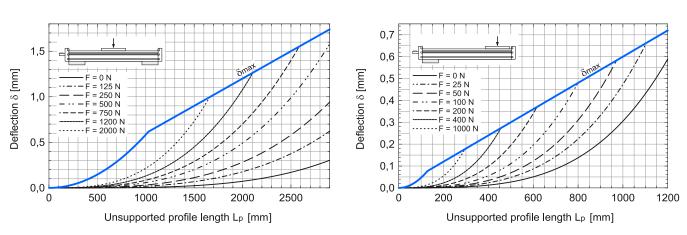
Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
O.m.c	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	1,6 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)	0,14 + 0,14 × (nc - 1)
	16 × 5	2	$1.9 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.09 \times (nc - 1)$	0,16 + 0,14 × (nc - 1)
		4	$2.2 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.09 \times (nc - 1)$	0,18 + 0,14 × (nc - 1)
	16 × 5	0	$2.9 + 0.0104 \times (Abs. stroke + (nc - 1) \times A) + 0.19 \times (nc - 1)$	0,28 + 0,28 × (nc - 1)
	2LR version	2	3,5 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,32 + 0,28 × (nc - 1)
		4	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,35 + 0,28 × (nc - 1)
		0	1,9 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,15 + 0,15 × (nc - 1)
MTV 65	16 × 10	2	2,2 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,19 + 0,15 × (nc - 1)
05		4	2,5 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,22 + 0,15 × (nc - 1)
		0	$3.5 + 0.0104 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	0,30 + 0,30 × (nc - 1)
	16 × 10 2LR version	2	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,34 + 0,30 × (nc - 1)
	ZZIV VOIOIOII	4	4,8 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,37 + 0,30 × (nc - 1)
		0	$2.5 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,20 + 0,20 × (nc - 1)
	16 × 16	2	$2.8 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,26 + 0,20 × (nc - 1)
		4	$3.2 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,31 + 0,20 × (nc - 1)

^{*}Absolute stroke [mm]

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

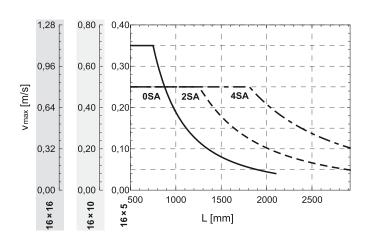

Planar moment of inertia

Linear Unit	Planar m ine	oment of rtia
	ly [cm ⁴]	lz [cm ⁴]
MTV 65 MTV 65 2LR	71,3	89,4

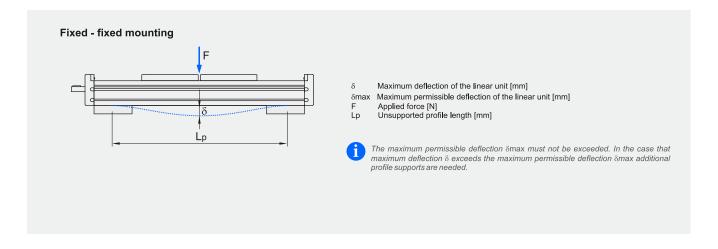

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

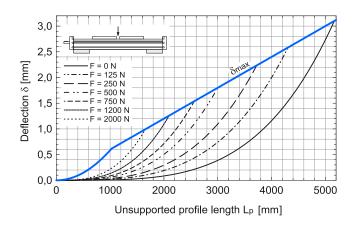
Deflection of the linear unit



MTV 65

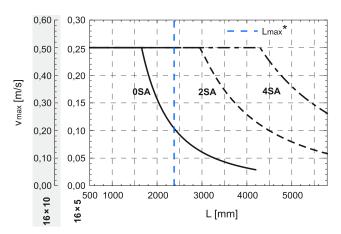

Maximum travel speed as a function of the profile length (Vmax - L curves)

MTV 65



3.045.0

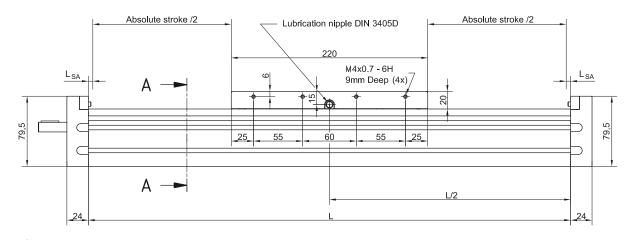
Deflection of the 2LR version

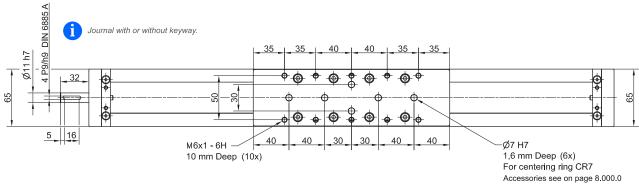


MTV 65 2LR

Maximum travel speed as a function of the profile length (Vmax - L curves)

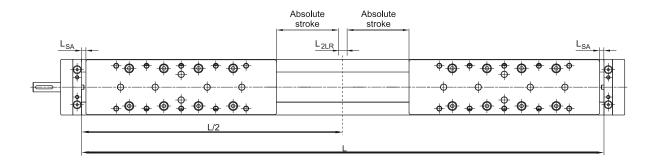
MTV 65 2LR




^{*} Max. length Lmax of MTV 65 2LR linear unit with 16x10 ball screw.

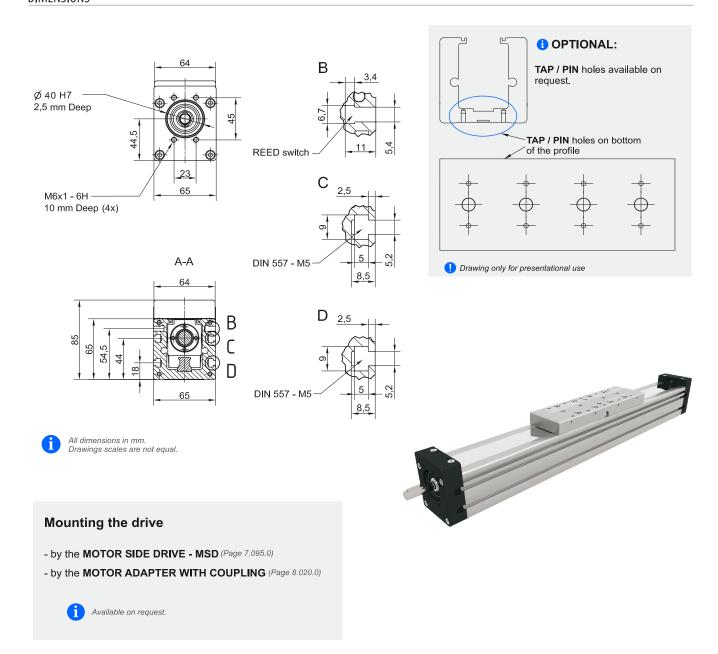
Linear Unit doesn't include any safety

Absolute stroke = Effective stroke + 2 x Safety stroke stroke.


n	L_SA
0	5,0
2SA	31,0
4SA	62,0

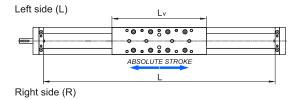
L_{SA} Additional length [mm]

All dimensions in mm; Drawings scales are not equal.


2LR version

n	L_SA	L_{2LR}
0	5,0	5,0
2SA	31,0	67,0
4SA	62,0	129,0

L_{SA} Additional length [mm]


L_{2LR} Min. distance between carriages [mm]

Defining of the linear unit length

1 Standard version

Ltotal = L + 48 mm, Lv = 220 mm

Multiple carriages

Connection between the carriages must be provided by the customer

nc - Number of carriages

1 Version 2LR L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) L = 2 × (Effective stroke + 2 × Safety stroke) + 2 × Lv + 2 × LsA + LzLR + A × (nc - 1) Ltotal = L + 48 mm, Lv = 220 mm Left side (L) . ABSOLUTE STROKE ABSOLUTE STROKE Right side (R) **Multiple carriages** Connection between the carriages must be provided by the customer nc - Number of carriages

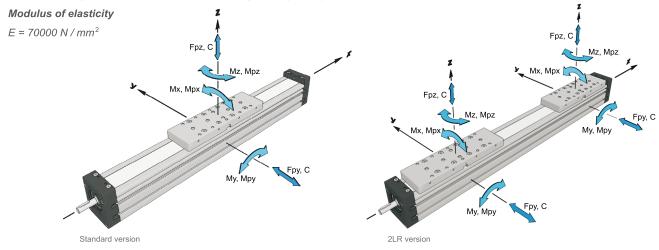
General technical data

Linear Unit	Carriage length	i Dynamic Load capacity	Dynamic moment Max. permissible loads Forces				longth					* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 80	290	34200	370	1470	1470	8930	15070	150	500	384	5480	5163
MTV 80 2LR	290	34200	370	1470	1470	8930	15070	150	500	384	11055	5224

^{*}For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages and screw support SA
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions


Operating temp. 0°C ~+60°C

Duty cycle 100%

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

For operating temperature out of the presented range, please contact us.

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	nent	*	Max	x. permissible	oads	
	carriages	Load capacity				For	ces		Moments	
						Fpy	Fpz	Мрх	Мру	Mpz
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 80 / MTV 80 2LR	2	68400	740	34,2 × A	34,2 × A	17860	30130	300	15,0 × A	8,9 × A

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	1 Max. travel speed	Lead constant	prec	eatability ision ım]	Dynamic Ioad capacity BS	⁵ Max. axial load	Max. drive torque	⁴ Min. stroke	Max. acceleration	
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]	
MTV 80	20 × 5	3300	0,28	5	± 0,02	± 0,01	14800	14800	11,9 with Keyway 13,0 without Keyway	with Keyway 13,0		
MTV 80 2LR	20 × 10	3300	0,55	10	<u>+</u> 0,02	± 0,01	15900	13850	11,9	55	20	
	20 × 20		1,10	20	± 0,02	± 0,01	16250	6930	with Keyway 24,5			
	20 × 50	3000	2,50	50	± 0,02	± 0,01	13000	2770	without Keyway			

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

 $^{^{2}}$ For the ball nut with the preload of 2%, please contact us.

 $^{^{\}rm 3}$ With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

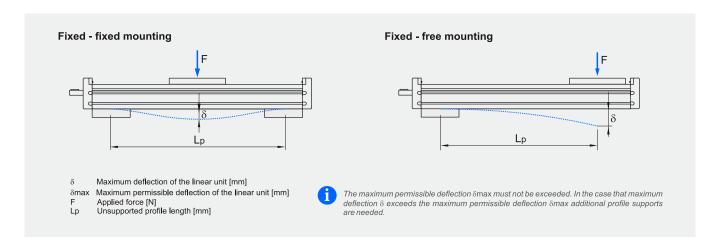
Mass, moved mass, mass moment of inertia and no load torque

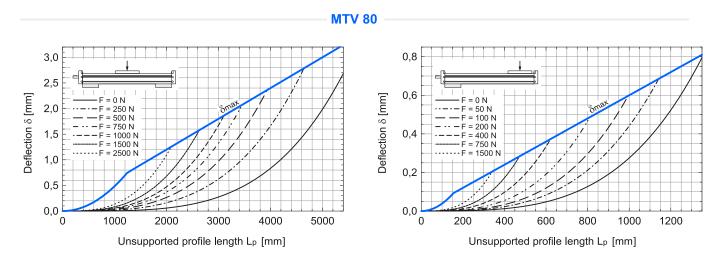
Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
0	[d×l]	n _{SA}	[kg]	[kg]
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	20 × 5	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	14,6 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,00 + 6,00 × (nc - 1)
	20 × 5 2LR version	2	15,9 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,14 + 6,00 × (nc - 1)
		4/6/8/10	17,6 + 0,8 * (n _{SA} - 4) + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,42 + 0,07 * (n _{SA} - 4) + 6,00 × (nc - 1)
		0	$8.2 + 0.0114 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
MTV 80	20 × 10	2	$8.9 + 0.0114 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,07 + 3,00 × (nc - 1)
00		4/6/8/10	9,7 + 0,4 * (n_{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	$8,2 + 0,0114 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	20 × 20	2	$8.9 + 0.0114 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n_{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	$8,2 + 0,0114 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	20 × 50	2	$8.9 + 0.0114 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,07 + 3,00 × (nc - 1)
		4/6/8/10	$9.7 + 0.4 * (n_{SA} - 4) + 0.0114 * (Abs. stroke + (nc - 1) * A) + 3.0 * (nc - 1)$	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)

Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
0	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	5,6 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,23 + 0,23 × (nc - 1)
	20 × 5	2	6,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,26 + 0,23 × (nc - 1)
		4/6/8/10	$7.0 + 0.4 * (n_{SA} - 4) + 0.0127 * (Abs. stroke + (nc - 1) * A) + 0.19 * (nc - 1)$	0,31 + 0,015 * (n _{SA} - 4) + 0,23 × (nc - 1)
		0	9,5 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,46 + 0,46 × (nc - 1)
	20 × 5 2LR version	2	10,7 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,51 + 0,46 × (nc - 1)
		4/6/8/10	12,3 + 0,8 * (n _{SA} - 4) + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	$0.62 + 0.03 * (n_{SA} - 4) + 0.46 * (nc - 1)$
		0	$6.2 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	0,25 + 0,25 × (nc - 1)
MTV 80	20 × 10	2	$6.8 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	$0.30 + 0.25 \times (nc - 1)$
00		4/6/8/10	7,6 + 0,4 * (n_{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,41 + 0,025 * (n _{SA} - 4) + 0,25 × (nc - 1)
		0	$8.5 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 3.04 \times (nc - 1)$	0,30 + 0,30 × (nc - 1)
	20 × 20	2	$9.1 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 3.04 \times (nc - 1)$	0,41 + 0,30 × (nc - 1)
		4/6/8/10	10,1 + 0,5 * (n_{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 3,04 × (nc - 1)	0,62 + 0,055 * (n _{SA} - 4) + 0,30 × (nc - 1)
		0	24,4 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,70 + 0,70 × (nc - 1)
	20 × 50	2	25,5 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,97 + 0,70 × (nc - 1)
		4/6/8/10	$27.1 + 0.6 * (n_{SA} - 4) + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 19.00 \times (nc - 1)$	$1,50 + 0,135 * (n_{SA} - 4) + 0,70 * (nc - 1)$

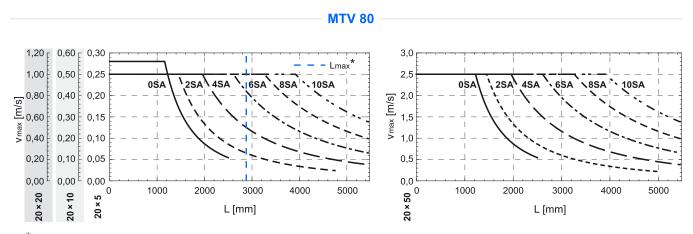
*Absolute stroke [mm]
A - Distance between carriages [mm]. More info on following pages.
nc - Number of carriages

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

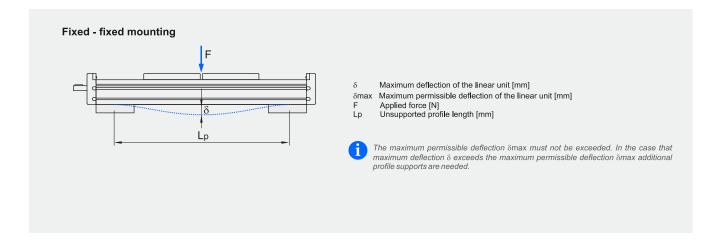

Planar moment of inertia


Linear Unit	Planar moment of inertia							
	ly [cm ⁴]	Iz [cm ⁴]						
MTV 80 MTV 80 2LR	144,1	192,3						

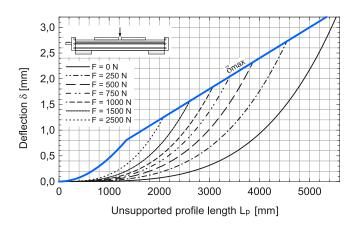
^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm.


No Load Torque value increases with stroke (and with A) elongation.

Deflection of the linear unit

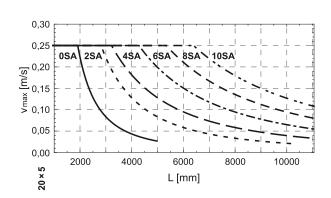


Maximum travel speed as a function of the profile length (Vmax - L curves)



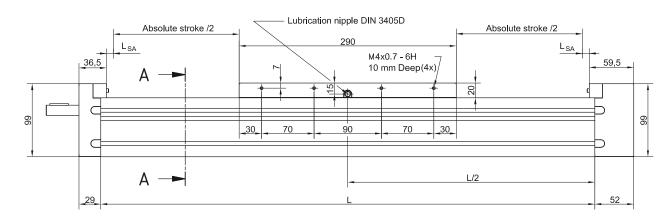
^{*} Max. length Lmax of MTV 80 linear unit with 20x10 ball screw.

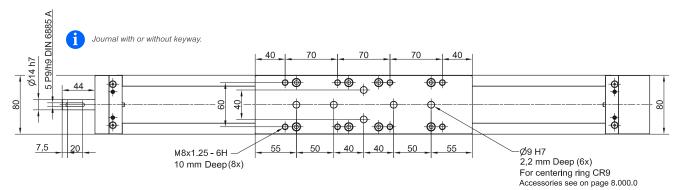
Deflection of the 2LR version



MTV 80 2LR

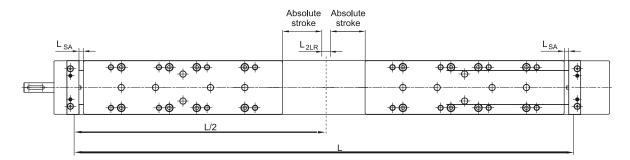
Maximum travel speed as a function of the profile length (Vmax - L curves)


MTV 80 2LR



i Linear Unit doesn't include any safety

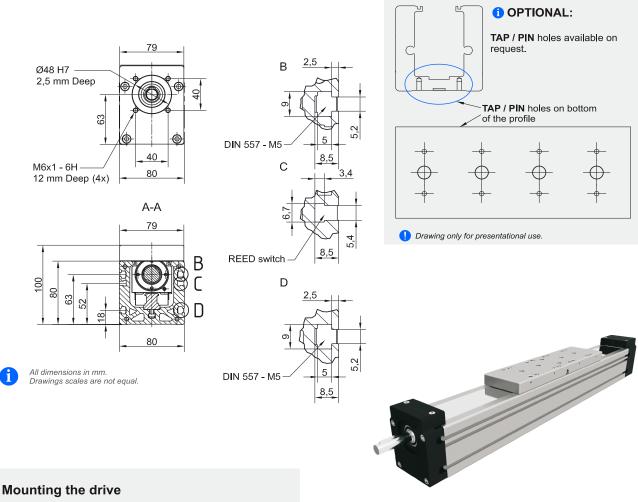
Absolute stroke = Effective stroke + 2 x Safety stroke stroke.



n _{sa}	L_SA
0	6,0
2SA	28,5
4SA	59,5
6SA	90,5
8SA	121,5
10SA	152,5

L_{SA} Additional length [mm]

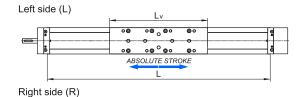
All dimensions in mm; Drawings scales are not equal.


2LR Version

n_{SA}	L_SA	$L_{\rm 2LR}$
0	6,0	0,0
2SA	28,5	48,0
4SA	59,5	110,0
6SA	90,5	172,0
8SA	121,5	234,0
10SA	152,5	296,0

L_{SA} Additional length [mm]

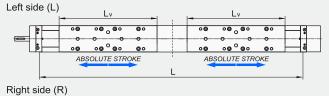
 ${\sf L}_{\sf 2LR}$ Min. distance between carriages [mm]


- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Defining of the linear unit length

1 Standard version

Ltotal = L + 81 mm, Lv = 290 mm


Multiple carriages

Connection between the carriages $A \ge Lv$ must be provided by the customer

nc - Number of carriages

1 2LR version

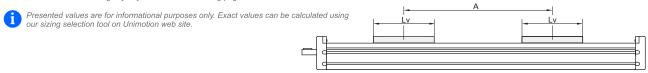
L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm L = 2 × (Effective stroke + 2 × Safety stroke) + 2 × Lv + 2 × LsA + L2LR + A × (nc - 1) + 15 mm Ltotal = L + 81 mm, Lv = 290 mm

Multiple carriages

Connection between the carriages must be provided by the customer

nc - Number of carriages

General technical data


Linear Unit	Carriage length	i Dynamic Load capacity	(i) D)	j Dynamic moment			Max.;	oermissib	le loads Moments		* Max. length	* Max. stroke	
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	F py [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]	
MTV 110	330	49600	630	2650	2650	10000	20260	295	670	535	5850	5456	

 $^{f *}$ For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages and screw support SA (equation of defining the linear unit length for particular size of the linear unit needs to be used). Operating temp. 0°C ~ +60°C Duty cycle 100% Recommended values of loads: For operating temperature out of the presented range, please contact us. All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We Mz. Mpz recommend a minimum safety factor (fs =5.0) Modulus of elasticity $E = 70000 \, \text{N} \, / \, \text{mm}^2$

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	nent	* Max. permissible loads						
	carriages	Load capacity				For	ces	Moments				
						Fpy	Fpz	Мрх	Мру	Mpz		
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]		
MTV 110	2	99200	1260	49,6 × A	49,6 × A	20000	40500	590	20,3 × A	10,0 × A		

*A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	² Max. Repeatability precision [mm]		Dynamic Ioad capacity BS	Max, axial load	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
	32 × 5	2150	0,18	5	± 0,02	± 0,01	18850	18850	16,7 with Keyway 16,7 without Keyway	65	
MTV 110	32 × 10	3000	0,50	10	± 0,02	± 0,01	37000	29600	27,3	65	20
	32 × 20		1,00	20	± 0,02	± 0,01	22950	14800	with Keyway 52,3		
	32 × 32		1,60	32	± 0,02	± 0,01	15500	9240	without Keyway	70	

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

Planar moment of inertia

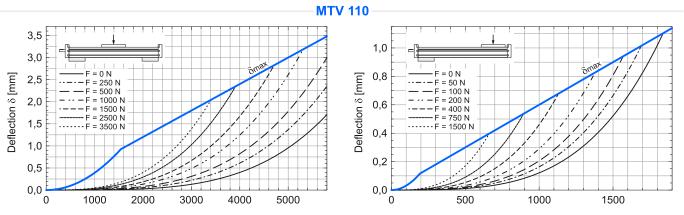
Linear Unit		oment of rtia
	ly [cm ⁴]	lz [cm ⁴]
MTV 110	562,0	669,0

² For the ball nut with the preload of 2%, please contact us.

³ With SA the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

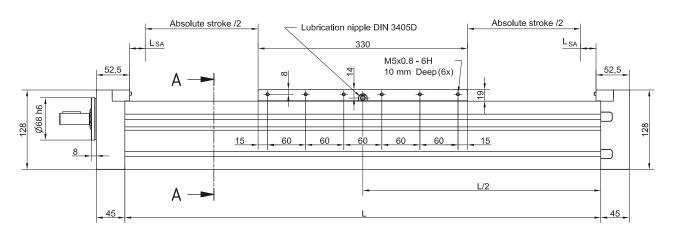
Mass, moved mass, mass moment of inertia and no load torque

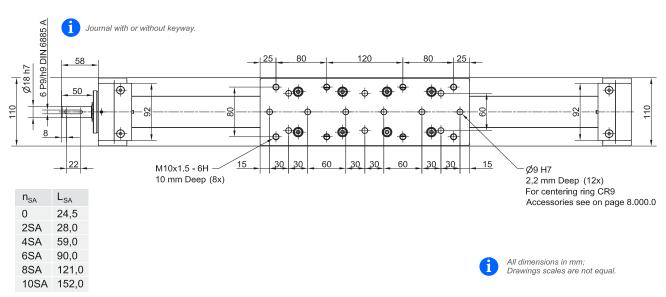

Linear	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
Unit	[d×l]	n _{SA}	[kg]	[kg]
		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 5	2	$17.7 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
	32 × 10	0	$17.3 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	4,90 + 4,90 × (nc - 1)
		2	$17.7 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	5,03 + 4,90 × (nc - 1)
MTV		4/6/8/10	19,3 + 0,8 * (n_{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
110		0	$17.3 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	4,90 + 4,90 × (nc - 1)
	32 × 20	2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n_{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
		0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
	32 × 32	2	$17.7 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)

Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	34,6 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,60 + 0,60 × (nc - 1)
	32 × 5	2	35,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,67 + 0,60 × (nc - 1)
		4/6/8/10	$39.4 + 2.2 * (n_{SA} - 4) + 0.0690 \times (Abs. stroke + (nc - 1) \times A) + 0.31 \times (nc - 1)$	0,81 + 0,035 * (n _{SA} - 4) + 0,60 × (nc - 1)
	32 × 10	0	35,5 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,70 + 0,70 × (nc - 1)
		2	36,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,84 + 0,70 × (nc - 1)
MTV		4/6/8/10	$40.4 + 2.2 * (n_{SA} - 4) + 0.0690 * (Abs. stroke + (nc - 1) * A) + 1.24 * (nc - 1)$	1,12 + 0,070 * (n _{SA} - 4) + 0,70 × (nc - 1)
110		0	39,3 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	0,75 + 0,75 × (nc - 1)
	32 × 20	2	39,9 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	1,03 + 0,75 × (nc - 1)
		4/6/8/10	$44.4 + 2.2 * (n_{SA} - 4) + 0.0690 × (Abs. stroke + (nc - 1) × A) + 4.96 × (nc - 1)$	1,60 + 0,140 * (n _{SA} - 4) + 0,75 × (nc - 1)
		0	47,0 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	0,80 + 0,80 × (nc - 1)
	32 × 32	2	47,8 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	1,25 + 0,80 × (nc - 1)
		4/6/8/10	$52.8 + 2.3 * (n_{SA} - 4) + 0.0690 * (Abs. stroke + (nc - 1) * A) + 12.71 * (nc - 1)$	2,16 + 0,225 * (n _{SA} - 4) + 0,80 × (nc - 1)

^{*}Absolute stroke [mm]

Deflection of the linear unit

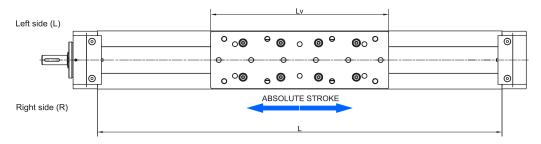

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

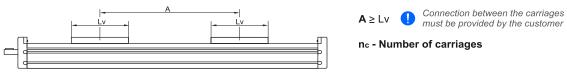
^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

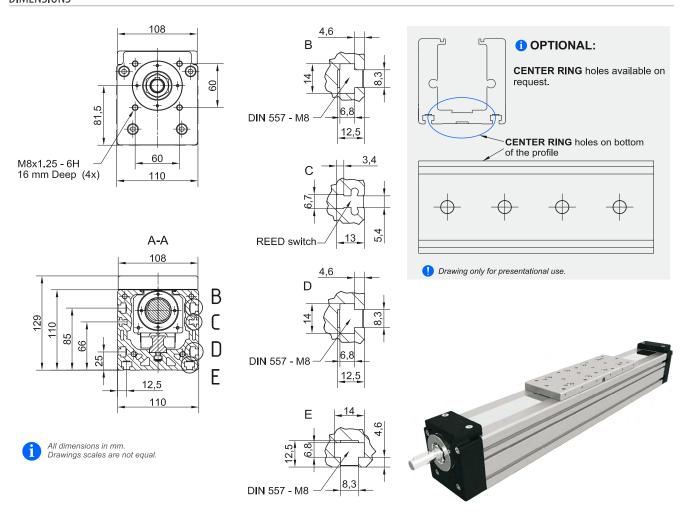
Linear Unit doesn't include any safety

Absolute stroke = Effective stroke + 2 x Safety stroke stroke.



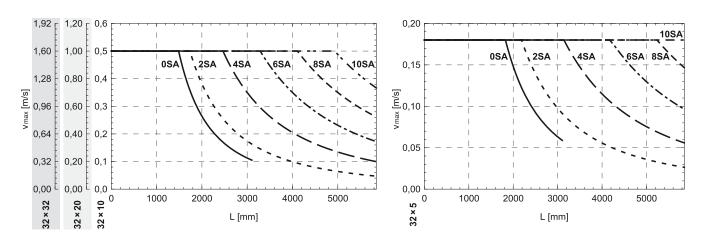
L_{SA} Additional length [mm]


Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm

Ltotal = L + 90 mm, Lv = 330 mm

Multiple carriages



Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

MTJ ECO

CHARACTERISTICS

The MTJ ECO series Linear Unit is a powerful and cost-effective Linear Unit with toothed belt drive and a Zero-backlash Ball rail guide system for easy and accurate linear movements.

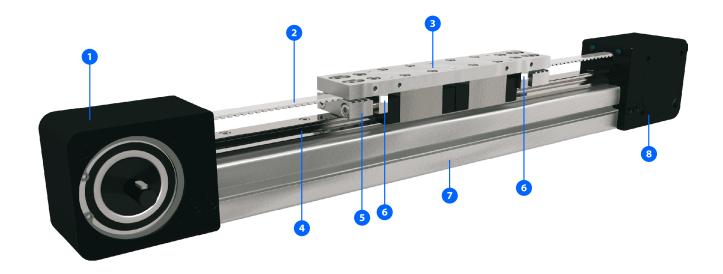
It can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

An extruded aluminum Profile from 6063 AL with on it mounted Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed. The linear unit MTJ ECO uses a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The aluminum Profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Different carriage lengths of the Linear Unit allow the possibility to attach additional accessories on the

Lubrication holes on the carriage allow easy re-lubrication of the Ball rail guide .


For the linear unit MTJ ECO various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

1 The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

- 1 Drive block with pulley2 AT polyurethane toothed belt with steel tension cords3 Carriage

- 4 Linear Ball Guideway5 Belt Tensioning system6 Lubrication port
- 7 Aluminium profile-Hard anodized
- 8 End block

HOW TO ORDER

MTJ - 40 - ECO - 700 - L2 - 300 -	10R
Series :	
ECO	
Absolute stroke [mm]: (Absolute stroke = Effective stroke + 2 x Safety stroke)	
Carriage Version :	
S: Short	
L: Long	
Number of carriages: The stated number specifies the number of carriages on one Linear unit (up to 5 carriages avaliable) Leave blank: For the case of one carriage	
Distance between two carriages [mm] :	
Leave blank : For the case of one carriage	
Type of drive pulley:	_
0: Pulley with through hole	
1: Pulley with journal	
10 : Pulley with journal (without Keyway)	
2: Pulley with journal on both sides	
20 : Pulley with journal on both sides (without Keyway)	
3: Without drive unit	
Drive journal position :	
L: Journal on left side	

R: Journal on right side

Leave blank: For type of drive pulley 0, 2, 20 and 3

General technical data

Linear Unit	Carriage length	Dynamic load capacity	1	Dynamic moment		Max. permissible loads Forces Moments					Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy Fpz Mpx			Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	L _{max} [mm]	[mm]	[mm]
MTJ 40 ECO S	132	9900	79	59	59	3270	5100	34	34	34	0,45	± 0,1	5960	5813	40
MTJ 40 ECO L	200	19800	158	660	660	6540	10190	60	341	219	0,72	± 0,1	2900	5745	40

^{*}For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions

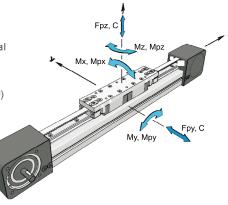
Operating temp. 0°C ~+60°C

Duty cycle 100%

For operating temperature out of the

presented range, please contact us.

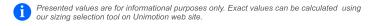
Recommended values of loads

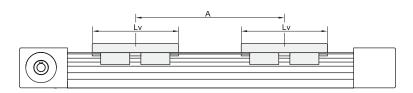

All the data of dynamic moments and load

capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety.

We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity


 $E = 70000 \text{ N} / \text{mm}^2$



General technical data for double carriage

Linear Unit	Carriage	Dynamic	" Dynamic moment			* Max. permissible loads					
	version	load capacity					ces		Moments		
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	
MT 40 F00	S2	19800	158	9,9 × A	9,9 × A	6540	10190	68	5,1 × A	3,3 × A	
MTJ 40 ECO	L2	39600	317	19,8 × A	19,8 × A	13080	20380	120	10,2 × A	6,5 × A	

^{*}A - Distance between carriages [mm]. More on page 4.030.0

Drive and belt data

Linear Unit	**Max. travel speed [m / s]	Max. drive torque [Nm]	* No load torque [Nm]	Puley drive ratio [mm / rev]	Pulley diameter [mm]	Belt type	Belt width	Max. force transmited by belt [N]	Specific spring constant C _{spec} [N]	** Max. acceleration [m/s ²]
MTJ 40 ECO S	2	7.5	1,0 × nc	400	F7 04	AT-F	40	000	225000	70
MTJ 40 ECO L	3	7,5	1,1 × nc	180	57,31	AT5	12	262	235000	70

^{*}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

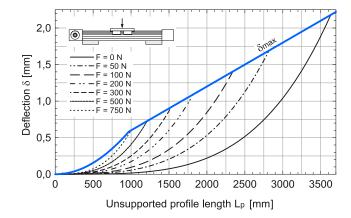
^{**}For minimum stroke below the stated value in the table above please contact us.

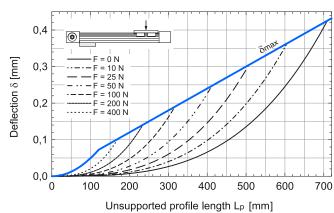
 $^{^{**}}$ For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

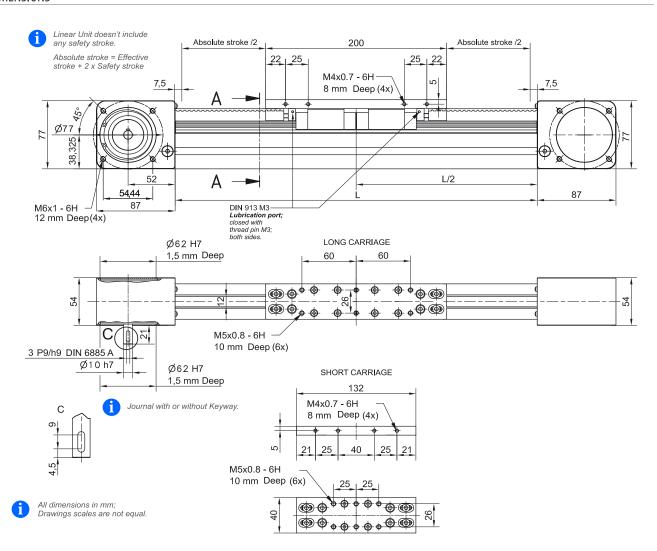
Linear Unit	Mass of linear unit	Mass moment of inertia		noment of ertia	
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]	
MTJ 40 ECO S	3,1 + 0,003 × (Abs. stroke + (nc - 1) × A) + 0,45 × (nc - 1)	70,1 + 0,007 × (Abs. stroke + (nc - 1) × A) + 36,9 × (nc - 1)	9.53	9,21	
MTJ 40 ECO L	3,55 + 0,003 × (Abs. stroke + (nc - 1) × A) + 0,72 × (nc - 1)	92,3 + 0,007 × (Abs. stroke + (nc - 1) × A) + 59,1 × (nc - 1)	3,33	3,21	

^{*}Absolute stroke [mm]

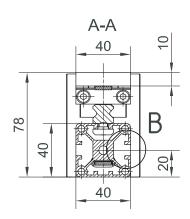


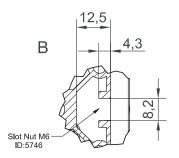

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

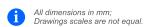
Deflection of the linear unit



MTJ 40 ECO




A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

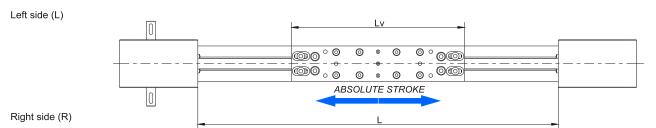

TYPE 0 TYPE 1 L and 1 R Ø77 Ø77 52 52 M6x1 - 6H 87 12 mm Deep M6x1 - 6H 12 mm Deep Journal with or without Keyway. Ø10 h7 3 P9/h9 Ø62 H7 1,5 mm Deep Ø62 H7 54 2 Ø62 H7 3 P9/h9 3 P9/h9 DIN 6885 A Ø10 h7 Ø62 H7

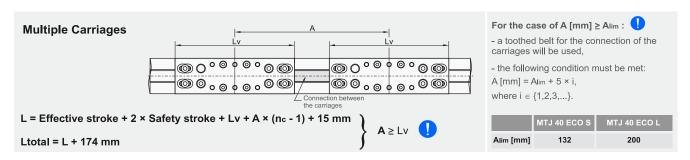
1,5 mm Deep

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.


Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + Lv + 15 mm

Lv - Long carriage = 200 mm

Ltotal = L + 174 mm

Lv - Short carriage = 132 mm

CHARACTERISTICS

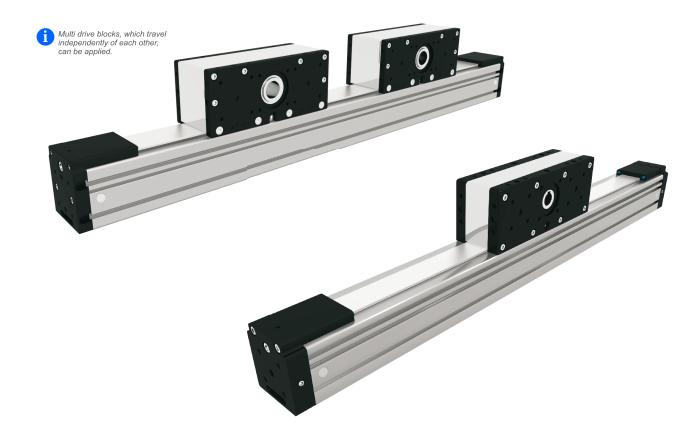
The MTJZ series contains Z-axis Linear Units with toothed belt drive, integrated Ball rail system and compact dimensions. This Linear Units provide high performance features such as, high speed, good accuracy and repeatability by vertical applications.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the linear units MTJZ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy. low wear and low noise can be realized.

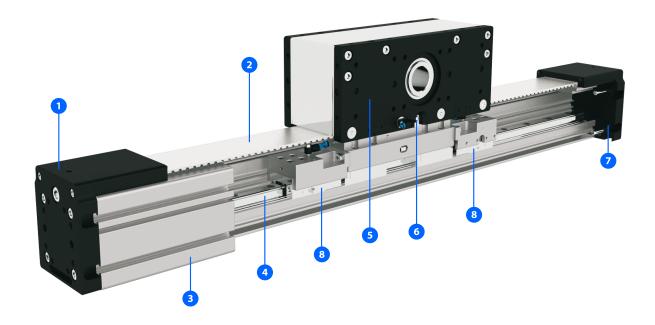

The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations

The aluminum Profile includes T-slots for attaching sensors and switches. Also, a Reed switch can be used

The drive block provides the possibility to attach a Motor or Gearbox housing and additional accessories on

Central lubrication port on the drive block allows easy re-lubrication of the Ball rail guide.

For the linear units MTJZ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



f The aluminium profiles are manufactured according to the medium EN 12020-2 standard

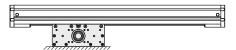
Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

- 1 Tension End with integrated belt tensioning system
- 2 AT polyurethane toothed belt with steel tension cords
- **3 -** Aluminium profile-Hard anodized
- 4 Linear Ball Guideway
- 5 Drive block with pulley, Motor flange; with built in Magnets6 Central lubrication port; both sides
- 7 Tension End with integrated belt tensioning system
- 8 Clamping and braking element for linear guideway

HOW TO ORDER

	MTJZ -	65	700 -	10	0 -	2	350
Series :							
MTJZ							
Size :							
40							
65							
80							
110							
Absolute Stroke [mm]: (Absolute stroke = Effective stroke + 2 x S	afety stroke)						
Type of drive pulley :							
0: Pulley with through hole							
1: Pulley with journal							
10 : Pulley with journal (without Keyway)							
2: Pulley with journal on both sides							
20 : Pulley with journal on both sides (with							
MTJZ 110 only available with drive pull	iey with through	i riole					
Clamping element :							
0: Without							
1: With (available only for MTJZ 110)							
Only as emergency break!							
Number of drive blocks :							
The stated number specifies the number of	f drive blocks o	n one Linear	unit (up to 5 d	rive blocks a	valiable)		
Distance between two drive blocks [mm]:						


Leave blank : For the case of one drive block

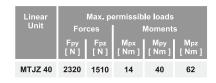
General technical data

Linear Unit	Drive block length	i Dynamic Ioad capacity	i Dyr	namic moi	ment	Mass of drive block	Maximum Repeatability	² Max. length	² Max. length	2 Ma Str		Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	³ (Version 1) Lmax [mm]	³ (Version 2) Lmax [mm]	³ (Ver. 1) [mm]	³ (Ver. 2) [mm]	[mm]
MTJZ 40	120	4610	28	120	120	0,95	±0,08	1000	3000	792	2792	25

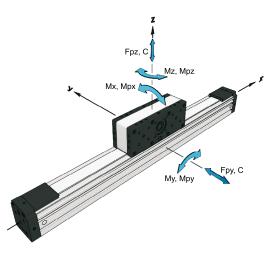
¹For minimum stroke below the stated value in the table above please contact us.

Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive blocks travel


Multiple drive blocks, which travel independently of each other, can be applied.

Recommended values of loads


All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity: $E = 70000 \text{ N/mm}^2$

Operating conditions	;
Operating temp.	0°C ~ +60°C
Duty cycle	100%

For operating temperature out of the presented range, please contact us.

Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Be l t width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	C _{spec} [N]	[m/s²]
MTJZ 40	5	3,6	0,2	99	31,51	AT3	20	230	225000	70

^{*}For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

Linear Unit	* Mass of linear unit		noment of ertia
	[kg]	ly [cm⁴]	lz [cm ⁴]
MTJZ 40	1,7 + 0,0023 × (Abs. stroke + (nb - 1) × A) + 0,95 × (nb - 1)	9,8	11,6

^{*}Absolute stroke [mm]

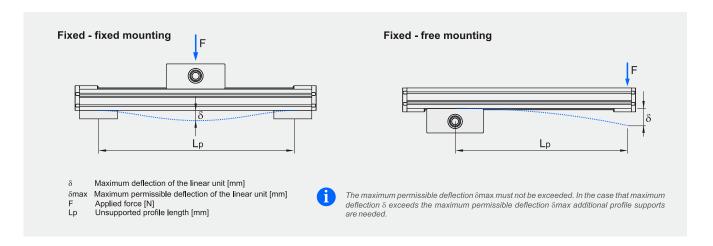
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

²For lengths / stroke over the stated value in the table above please contact us.

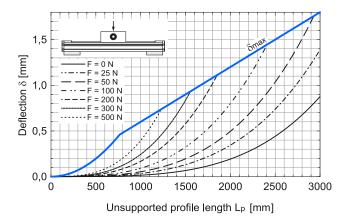
Values for max. stroke are not valid for multiple drive blocks
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

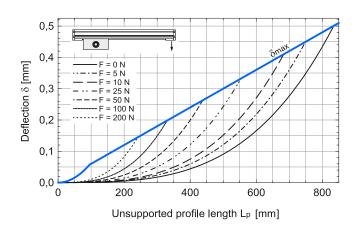
³Mounting versions

A - Distance between two drive blocks [mm] nb - Number of drive blocks

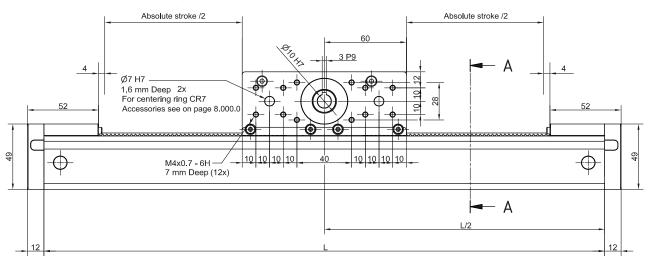

Mass moment of inertia

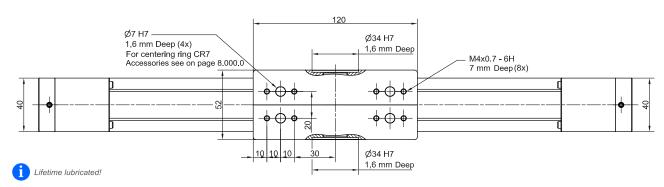
Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (<i>Version 2</i>) [10 ⁻⁴ kg m ²]
MTJZ 40	2,1 + 0,0058 × (Abs. stroke + (nb - 1) × A) + 0,22 × (nb - 1)	2,6

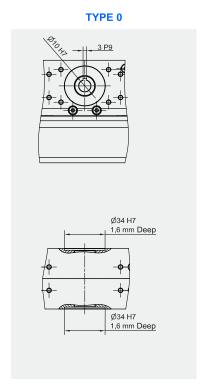

^{*}Absolute stroke [mm]

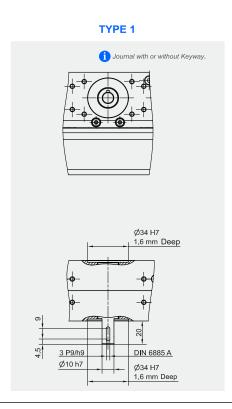

A - Distance between two drive blocks [mm] nb - Number of drive blocks

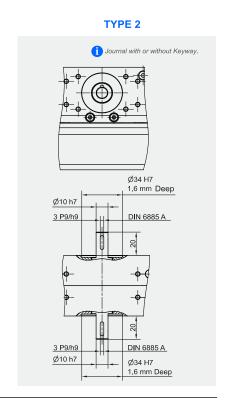
Deflection of the linear unit

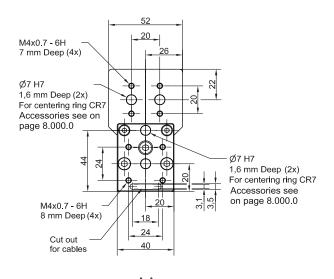

MTJZ 40

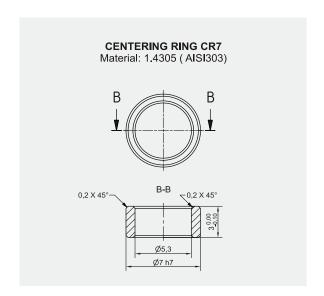


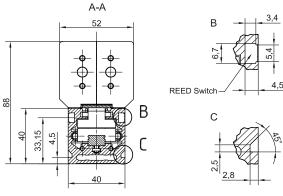

Linear Unit doesn't include any safety

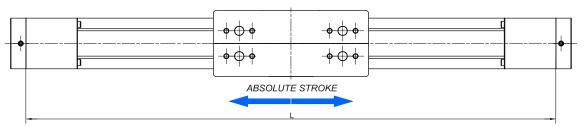

Absolute stroke = Effective stroke + 2 x Safety stroke.

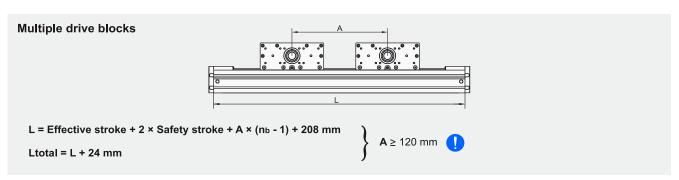





All dimensions in mm; Drawings scales are not equal.



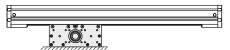



All dimensions in mm; Drawings scales are not equal.

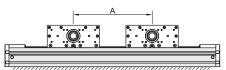
Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 208 mm

Ltotal = L + 24 mm



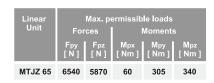
General technical data


Linea Unit	Drive block length	Dynamic Ioad capacity	i Dyr	iamic moi	ment	Mass of drive block	Maximum Repeatability	² Max. Iength	² Max. length	2 Ma Stre		Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	³ (Version 1) Lmax [mm]	³ (Version 2) Lmax [mm]	³ (Ver. 1) [mm]	³ (Ver. 2) [mm]	[mm]
MTJZ 6	5 200	19800	158	1025	1025	3,2	±0,08	1200	6000	880	5680	40

¹For minimum stroke below the stated value in the table above please contact us.

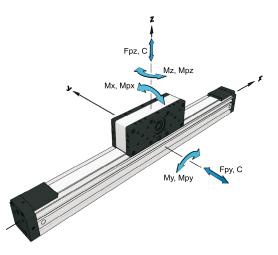
Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive blocks travel



Multiple drive blocks, which travel independently of each other, can be applied.

Recommended values of loads


All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs = 5.0)

Modulus of elasticity: $E = 70000 \text{ N} / \text{mm}^2$

Operating conditions	5
Operating temp.	0°C ~ +60°C
Duty cycle	100%

For operating temperature out of the presented range, please contact us.

Drive and belt data

Linear l	nit * Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	Cspec [N]	[m/s²]
MTJZ	5 5	13,1	0,9	165	52,52	AT5	32	500	600000	70

 $^{^{}f *}$ For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

Linear Unit	* Mass of linear unit	Planar moment of inertia	
	[kg]	ly [cm⁴]	lz [cm ⁴]
MTJZ 65	5,7 + 0,0054 × (Abs. stroke + (nb - 1) × A) + 3,2 × (nb - 1)	59,7	74,4

^{*}Absolute stroke [mm]

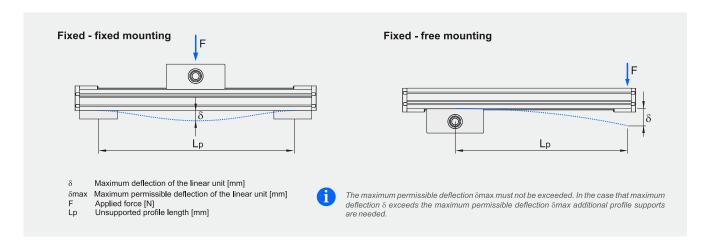
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

²For lengths / stroke over the stated value in the table above please contact us.

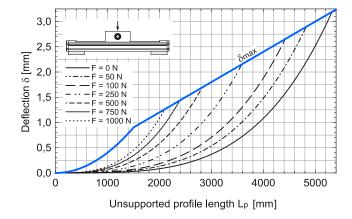
Values for max. stroke are not valid for multiple drive blocks
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

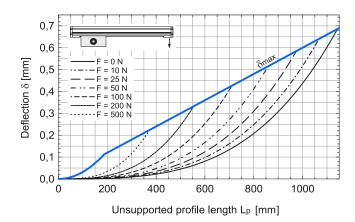
³Mounting versions

A - Distance between two drive blocks [mm] nb - Number of drive blocks

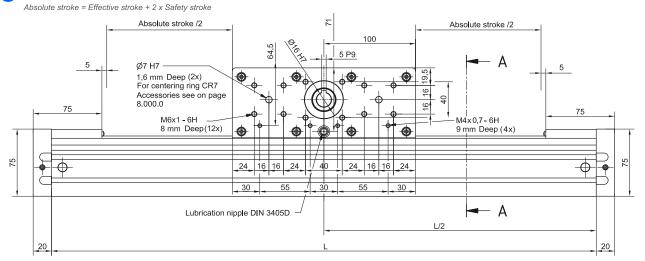

Mass moment of inertia

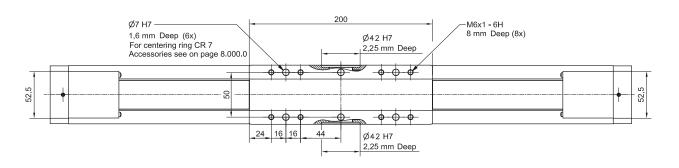
Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (<i>Version 2</i>) [10 ⁻⁴ kg m ²]
MTJZ 65	18,9 + 0,0374 × (Abs. stroke + (nb - 1) × A) + 1,7 × (nb - 1)	23,8

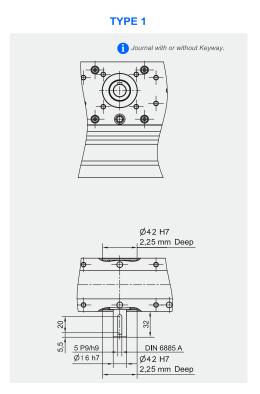

^{*}Absolute stroke [mm]

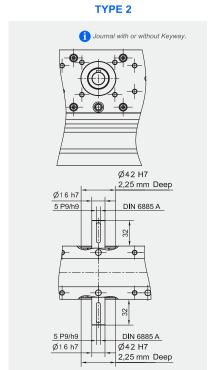

A - Distance between two drive blocks [mm] nb - Number of drive blocks

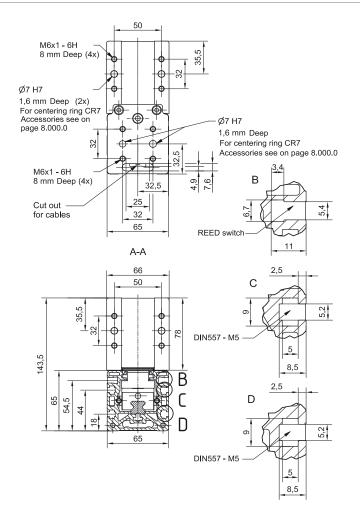
Deflection of the linear unit

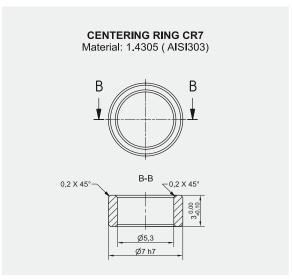



MTJZ 65

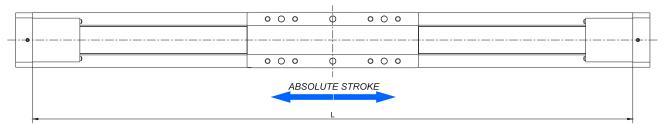

Linear Unit doesn't include any safety stroke.

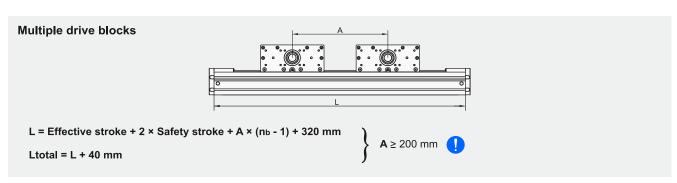





All dimensions in mm; Drawings scales are not equal.

Ø42 H7
2,25 mm Deep
Ø42 H7
2,25 mm Deep

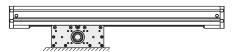



All dimensions in mm; Drawings scales are not equal.

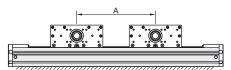
Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 320 mm

Ltotal = L + 40 mm



General technical data


Linear Unit	Drive block length	Dynamic load capacity	i Dyr	iamic moi	ment	Mass of drive block	Maximum Repeatability	Max. length	² Max. l ength		ax. oke	Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	³ (Version 1) Lmax [mm]	³ (Version 2) Lmax [mm]	³ (Ver. 1) [mm]	³ (Ver. 2) [mm]	[mm]
MTJZ 80	250	34200	370	2565	2565	4,9	±0,08	1500	6000	1118	5618	55

¹For minimum stroke below the stated value in the table above please contact us.

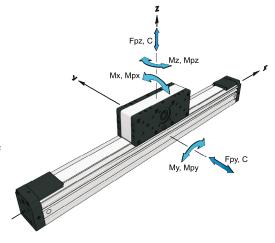
Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive blocks travel

Multiple drive blocks, which travel independently of each other, can be applied.

a

Recommended values of loads


All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity: $E = 70000 \text{ N/mm}^2$

Operating conditions	S
Operating temp.	0°C ~ +60°C
Duty cycle	100%

For operating temperature out of the presented range, please contact us.

Drive and belt data

Linear Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	Cspec [N]	[m/s²]
MTJZ 80	5	29,4	1,4	210	66,84	AT5	50	880	960000	70

^{*}For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

Linear Unit	* Mass of linear unit		noment of ertia
	[kg]	ly [cm ⁴]	lz [cm ⁴]
MTJZ 80	9,7 + 0,0083 × (Abs. stroke + (nb - 1) × A) + 4,9 × (nb - 1)	129,1	173,4

^{*}Absolute stroke [mm]

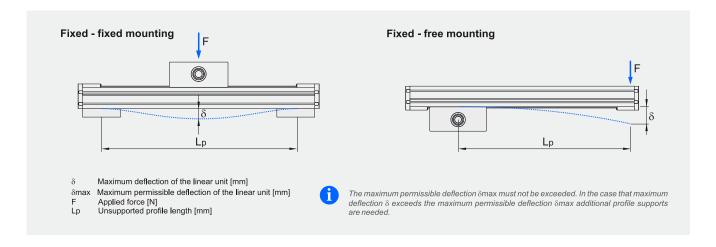
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

²For lengths / stroke over the stated value in the table above please contact us.

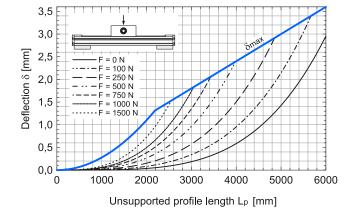
Values for max. stroke are not valid for multiple drive blocks
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

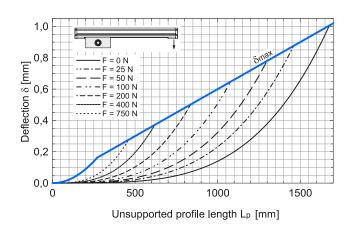
³Mounting versions

A - Distance between two drive blocks [mm] nb - Number of drive blocks

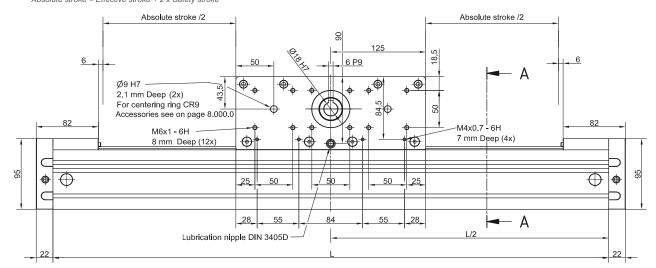

Mass moment of inertia

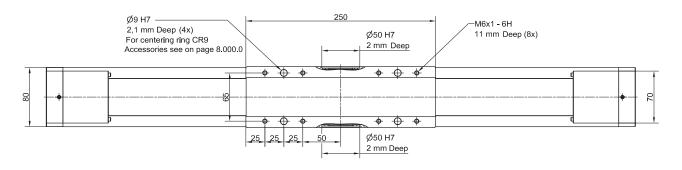
Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (Version 2) [10 ⁻⁴ kg m ²]
MTJZ 80	60,0 + 0,0922 × (Abs. stroke + (nb - 1) × A) + 6,4 × (nb - 1)	61,1

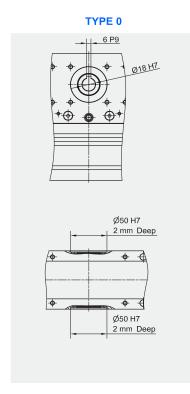

^{*}Absolute stroke [mm]

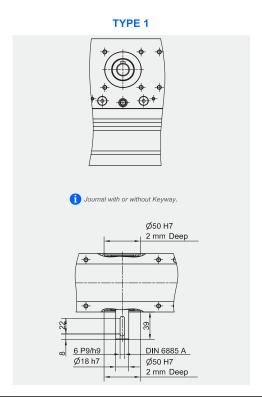

A - Distance between two drive blocks [mm]
nb - Number of drive blocks

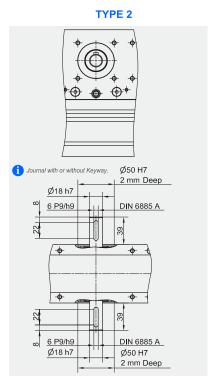
Deflection of the linear unit

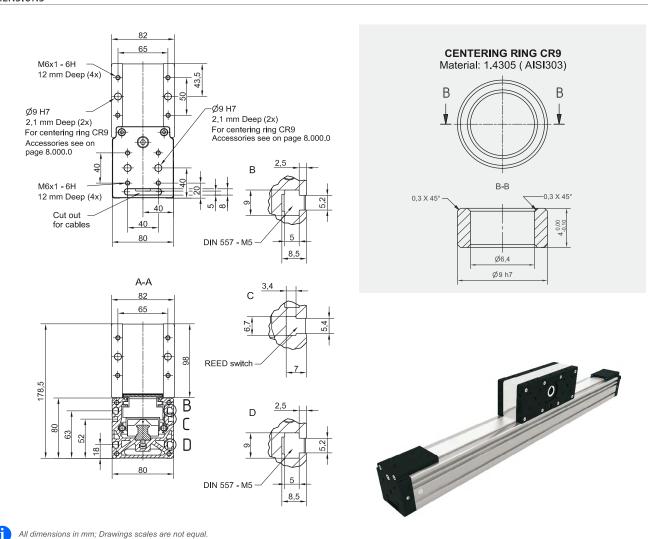

MTJZ 80

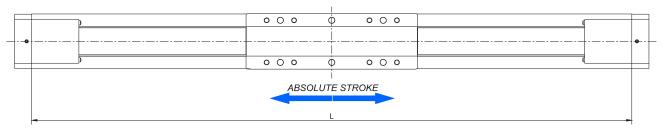


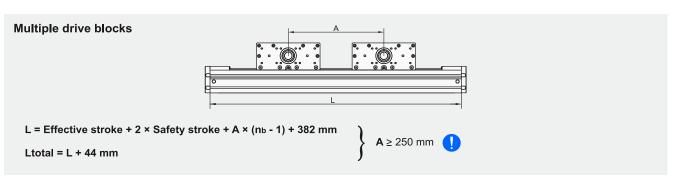

Linear Unit doesn't include any safety stroke.


Absolute stroke = Effective stroke + 2 x Safety stroke




All dimensions in mm; Drawings scales are not equal.

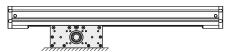

5.065.0



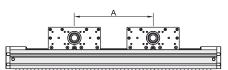
Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 382 mm

Ltotal = L + 44 mm


General technical data

Linear Unit	Drive block length	i Dynamic load capacity	1 Dyna	amic mon	nent	Mass of drive block	Maximum Repeatability	² Max. Iength	² Max. length	2 Ma Str	ax. oke	Min. Stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	³ (Version 1) Lmax [mm]	³ (Version 2) Lmax [mm]	³ (Ver. 1) [mm]	³ (Ver. 2) [mm]	[mm]
MTJZ 110	300	49600	630	3470	3470	11,3	±0,08	1800	6000	1304	5504	65


¹For minimum stroke below the stated value in the table above please contact us.

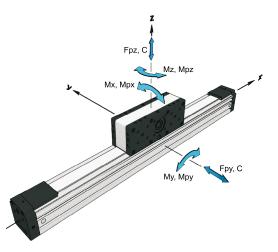
³Mounting versions

Version 1: Mounting by the drive block, profile travels

Version 2: Mounting by the profile, drive blocks travel

Multiple drive blocks, which travel independently of each other, can be applied.

Recommended values of loads


All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs = 5.0)

Modulus of elasticity: $E = 70000 \text{ N} / \text{mm}^2$

Operating condition	ıs
Operating temp.	0°C ~ +60°C
Duty cycle	100%

For operating temperature out of the presented range, please contact us.

Drive and belt data

Linea	r Unit	* Max. travel speed	Max. drive torque	No load torque of drive block	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	* Max. acceleration
		[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	Cspec [N]	[m/s²]
MTJ	Z 110	5	110,0	2,6	300	95,49	AT10	70	2300	2450000	70

 $^{^{}f *}$ For travel speed and acceleration over the stated value in the table above please contact us.

Mass and planar moment of inertia

Linear Unit	* Mass of linear unit		noment of ertia
	[kg]	ly [cm ⁴]	lz [cm ⁴]
MTJZ 110	21,7 + 0,0147 × (Abs. stroke + (nb - 1) × A) + 11,3 × (nb - 1)	513,0	620,0

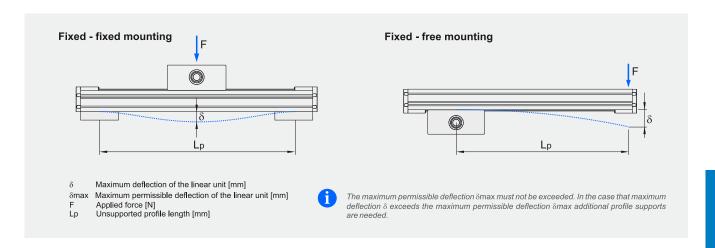
^{*}Absolute stroke [mm]

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

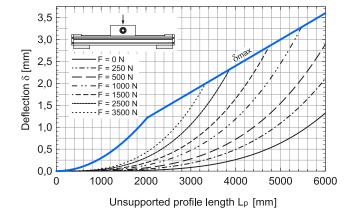
²For lengths / stroke over the stated value in the table above please contact us.

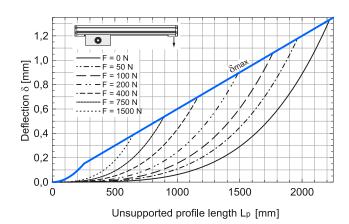
Values for max. stroke are not valid for multiple drive blocks
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

A - Distance between two drive blocks [mm] nb - Number of drive blocks


Mass moment of inertia

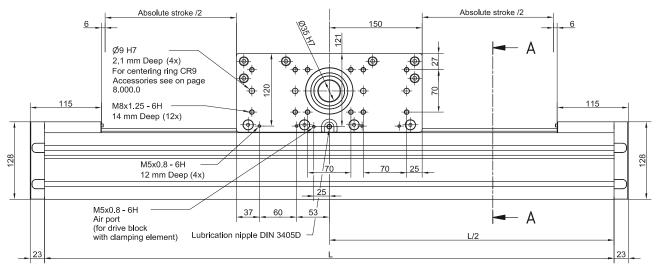
Linear Unit	* Mass moment of inertia (Version 1) [10 ⁻⁴ kg m ²]	Mass moment of inertia of drive block (Version 2) [10 ⁻⁴ kg m ²]
MTJZ 110	282,4 + 0,3358 × (Abs. stroke + (nb - 1) × A) + 45,3 × (nb - 1)	302,9

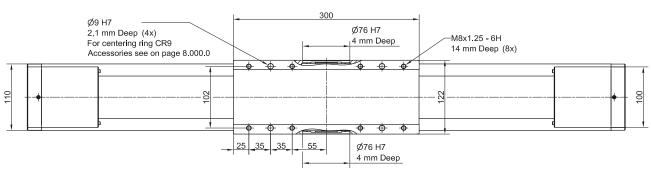

^{*}Absolute stroke [mm]


A - Distance between two drive blocks [mm]
nb - Number of drive blocks

Deflection of the linear unit

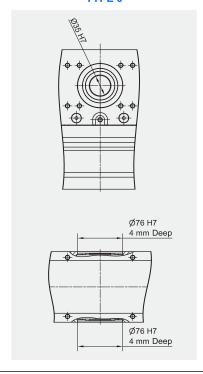
MTJZ 110

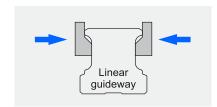




1

Linear Unit doesn't include any safety stroke.

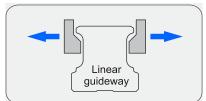

Absolute stroke = Effective stroke + 2 x Safety stroke



All dimensions in mm; Drawings scales are not equal.

TYPE 0

Drive block with clamping element


Clamping by spring-loaded energy

Air pressure = 0 bar

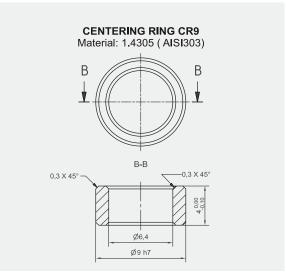
Holding force = 1400 N

Holding force is tested on clamping element using a slightly lubricated rail (ISO VG 68).

Opened by air pressure

Opening air pressure = 5,5 - 8 bar

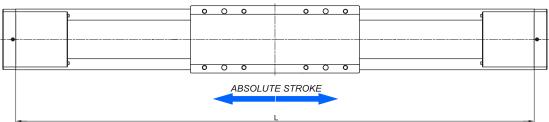
The air pressure opens clamping pistons. Free movement is allowed.

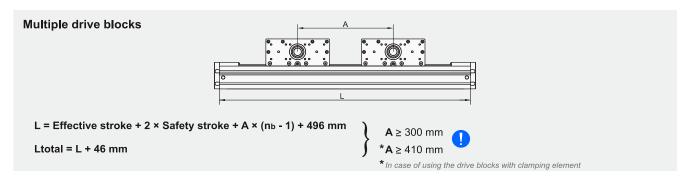

Purified and oiled air shall be used (according to ISO 8573-1 Class 4). Recommended filter size is 25 μm .

Linear Unit	Mass of drive block	* Mass of linear unit
	[kg]	[kg]
MTJZ 110	12,9	23,3 + 0,0147 × (Abs. stroke + (nb - 1) × A) + 12,9 × (nb - 1)

*Absolute stroke [mm]

A - Distance between two drive blocks [mm]
nb - Number of drive blocks


0


All dimensions in mm; Drawings scales are not equal.

Defining of the linear unit length

L = Effective stroke + 2 × Safety stroke + 496 mm

Ltotal = L + 46 mm

CHARACTERISTICS

The CTJ series includes Linear Units with a toothed belt drive and two parallel, integrated, Zero-backlash rail guides. Compact dimensions allow high performance features such as, high speed and repeatability. They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

A compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated Zero-backlash rail guide systems, allows high load capacities and an optimal sequence for the movement of larger masses at high speed.

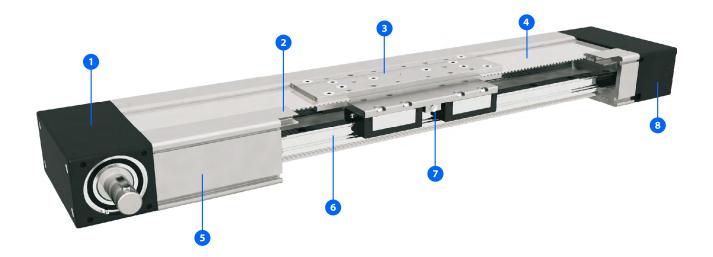
In the linear units CTJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The in the Profile slot driving Polyurethane timing belt, protects all the parts in the Profile from dust and other contaminations.

Different carriage lengths with lubrication port allows for easy re-lubrication of the Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



1 The aluminium profiles are manufactured according to the medium EN 12020-2 standard

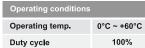
Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

- 1 Drive block with pulley2 Aluminum cover

- 2 Admindin cover
 3 Carriage; with built in Magnets
 4 AT polyurethane toothed belt with steel tension cords
 5 Aluminium profile-Hard anodized
 6 Two integrated Linear Ball Guideways
 7 Central lubrication port; both sides
 8 Tension End with integrated belt tensioning system

HOW TO ORDER


	CTJ -	145	1000 -	L2	300	- 10R	- 1
				\top		\top	
Series :							
СТЈ							
Size :							
90							
110							
145							
200							
Absolute stroke [mm] :							
(Absolute stroke = Effective stroke +							
Carriage Version : ————				_			
S: Short							
L: Long							
Number of carriages : ———							
The stated number specifies the nu							
(up to 5 carriages avaliable)							
Leave blank : For the case of one of	carriage						
Distance between two carriages [
Leave blank : For the case of one of	carriage						
Type of drive pulley : ————							
1: Pulley with journal							
10 : Pulley with journal (without Key	way)						
2 : Pulley with journal on both side							
20 : Pulley with journal on both side	s (without Ke	eyway)					
3: Without drive unit							
Patro to consulta a 197							
Drive journal position :							
L: Journal on left side							
R : Journal on right side	ov 3 30 or 4	2					
Leave blank: For type of drive pulley 2.6	-		eition loft or	right - P oids	must be all	20	
 By CTJ 200 with drive pulley 2 of specified - motor/gearbox attach 	יי בט, נדופ מדוע nment side.	л ь јоштнаг роз	SitiOII I C IL - L Of	ngni - K side	ะ เกษระ be als	SU	
-							
Connection plate : ————							
0: Without							

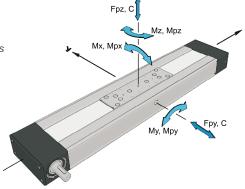
1: With

General technical data

Linear Unit	Carriage length	Dynamic load capacity	0	Dynamic moment		For	Max.	permiss I	ible load Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 90 S	102	4620	125	17	34	2000	4000	110	17	34	0,20	÷ 0,08	0000	5873	25
CTJ 90 L	156	9240	250	290	290	3990	8270	200	290	125	0,35	± 0,08	6000	5819	25

^{*}For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

For operating temperature out of the presented range, please contact us.



Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity

 $E = 70000 \text{ N} / \text{mm}^2$



General technical data for double carriage

Linear	Carriage	Dynamic	*	Dynamic moment		*		Max. peri	missible loads	
Unit	version	load capacity				Forces			Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz[N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTJ 90	S2	9230	250	4,6 × A	4,6 × A	4000	8000	220	4,0 × A	2,0 × A
C13 30	L2	18400	500	9,2 × A	9,2 × A	8000	16500	400	8,3 × A	4,0 × A

^{*}A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

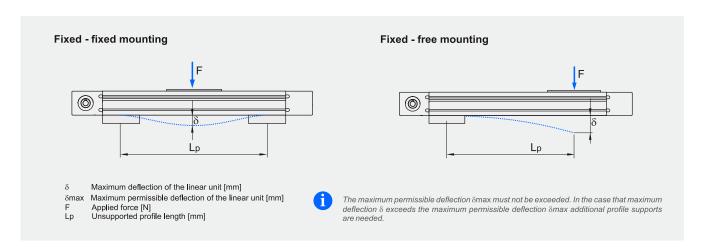
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Be l t width	Max. force transmited by belt	Specific spring constant Cspec	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s ²]
CTJ 90 S	5	7,5	0,40 × nc	90	28,65	AT 3	35	520	402500	70
CTJ 90 L	3	7,5	0,42 × nc	90	20,03	Al 3	33	320	402300	70

^{*}The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

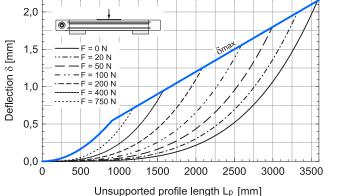
^{**}For minimum stroke below the stated value in the table above please contact us.

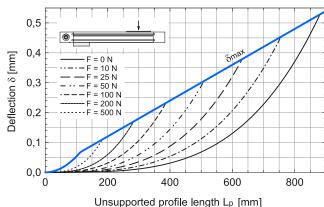
^{**}For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

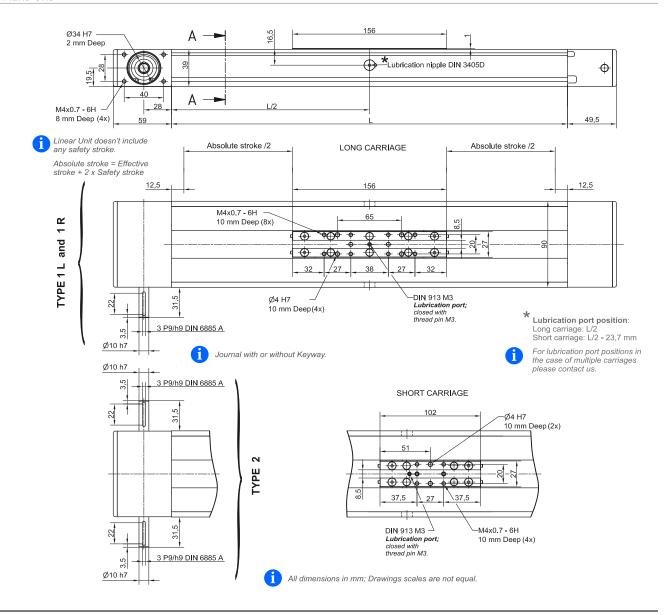

Linear Unit	Mass of linear unit	Mass moment of inertia		noment of ertia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]
CTJ 90 S	1,7 + 0,0048 × (Abs. stroke + (nc - 1) × A) + 0,20 × (nc - 1)	7 + 0,0031 × (Abs. stroke + (nc - 1) × A) + 4,1 × (nc - 1)	13.4	107,0
CTJ 90 L	2,1 + 0,0048 × (Abs. stroke + (nc - 1) × A) + 0,35 × (nc - 1)	11 + 0,0031 × (Abs. stroke + (nc - 1) × A) + 7,2 × (nc - 1)	13,4	107,0

^{*}Absolute stroke [mm]

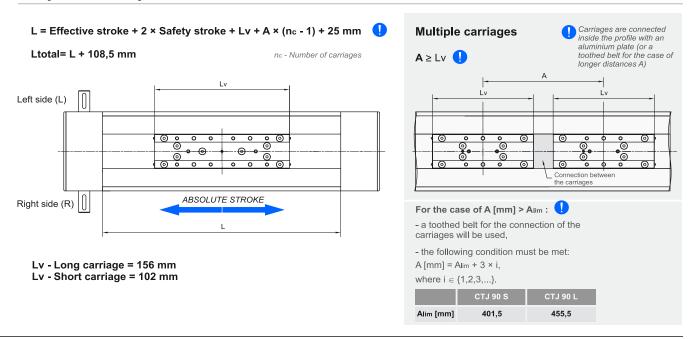


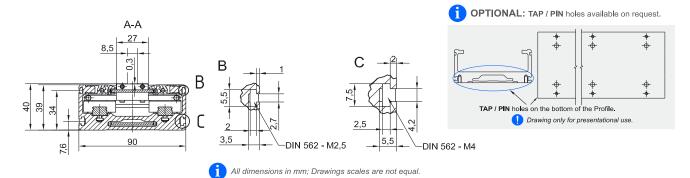

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

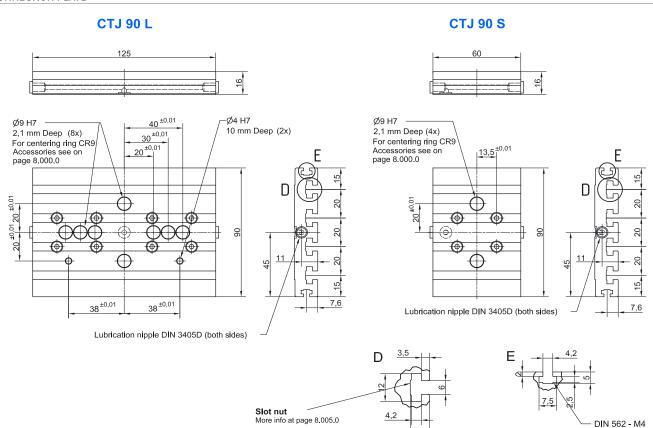
Deflection of the linear unit



CTJ 90




A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages


Defining of the linear unit length

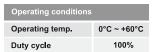
6.025.0

CONNECTION PLATE

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 90 S	60	0,2	103661
CTJ 90 L	125	0,4	103660

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)



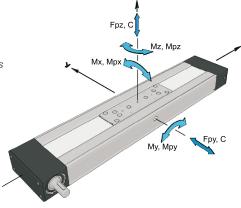
General technical data

Linear Unit	Carriage length	Dynamic load capacity	i	Dynamic moment		For	Max.		ible load Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 110 S	170	19800	610	118	235	6470	8390	260	90	90	0,64	÷ 0,08	6000	5805	40
CTJ 110 L	215	39600	1225	1680	1680	13080	18820	525	880	550	0,98	± 0,08	0000	5760	40

^{*}For lengths / stroke over the stated value in the table above please contact us. Values for max, stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

***For minimum stroke below the stated value in the table above please contact us.

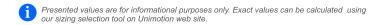
For operating temperature out of the presented range, please contact us.

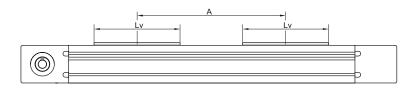


Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity


 $E = 70000 \, \text{N} \, / \, \text{mm}^2$



General technical data for double carriage

Linear	Carriage	Dynamic	*	Dynamic moment				Max. per	missible loads	
Unit	version	load capacity				For	ces		Moments	
		C [N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz[N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTJ 110	S2	39600	1220	19,8 × A	19,8 × A	12940	16770	520	8,4 × A	6,5 × A
CIJ IIU	L2	79200	2450	39,6 × A	39,6 × A	26150	37600	1050	18,8 × A	13,1 × A

^{*}A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

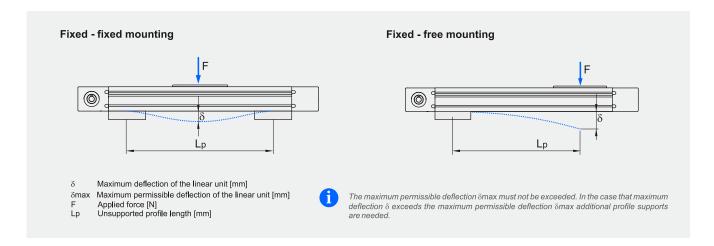
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
CTJ 110 S	6	15,7	0,98 × nc	120	38,20	AT 5	50	820	960000	70
CTJ 110 L	Ü	13,7	1,00 × nc	120	30,20	AIJ	30	020	900000	70

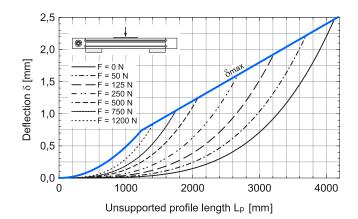
^{*}The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

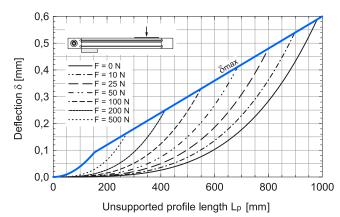
^{**}For travel speed and acceleration over the stated value in the table above please contact us.

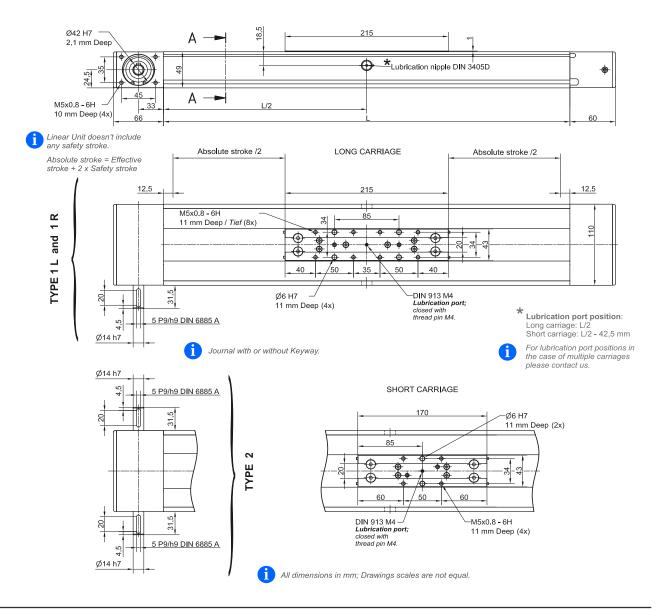
Mass and mass moment of inertia

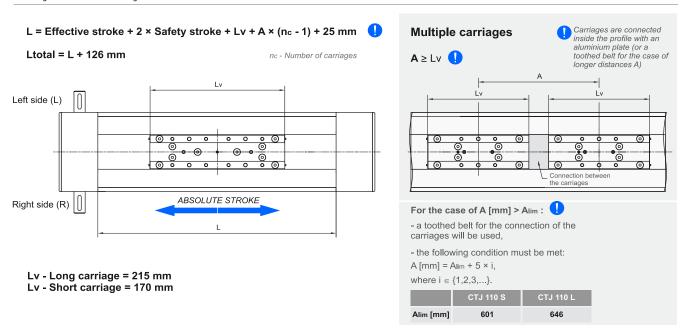
Linear Unit	Mass of linear unit	Mass moment of inertia		noment of ertia	
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm⁴]	lz [cm ⁴]	
CTJ 110 S	3,6 + 0,0072 × (Abs. stroke + (nc - 1) × A) + 0,64 × (nc - 1)	36 + 0,0125 × (Abs. stroke + (nc - 1) × A) + 23,3 × (nc - 1)	31.1	217,2	
CTJ 110 L	4,2 + 0,0072 × (Abs. stroke + (nc - 1) × A) + 0,98 × (nc - 1)	49 + 0,0125 × (Abs. stroke + (nc - 1) × A) + 35,8 × (nc - 1)	31,1	217,2	

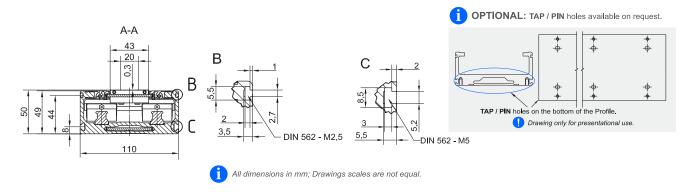

^{*}Absolute stroke [mm]
A - Distance between carriages [mm]. More info on following pages.
nc - Number of carriages

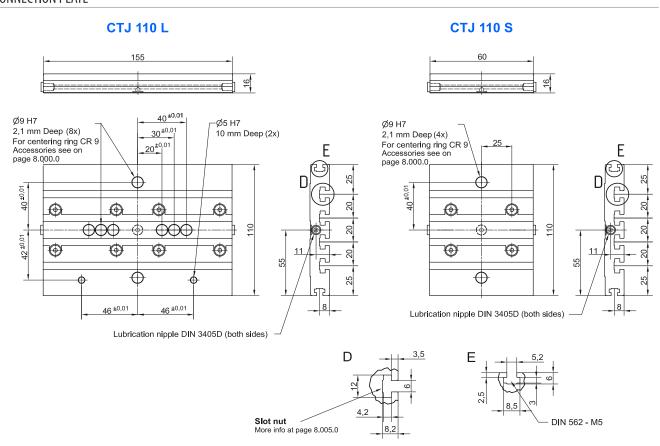



Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Deflection of the linear unit


CTJ 110





Defining of the linear unit length



CONNECTION PLATE

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 110 S	60	0,35	103663
CTJ 110 L	155	0,60	103662

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

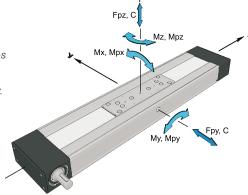
General technical data

Linear Unit	Carriage length	Dynamic Ioad capacity	Ó	Dynamic moment		For	Max.		ible load Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 145 S	180	34200	1500	260	520	8930	15320	674	260	180	1,35	± 0,08	6000	5795	55
CTJ 145 L	240	68400	3005	3420	3420	17870	30640	1200	1700	893	2,25	± 0,08	6000	5735	55

^{*}For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

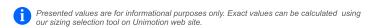
For operating temperature out of the presented range, please contact us.

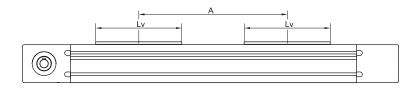

A

Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity


 $E = 70000 \text{ N} / \text{mm}^2$



General technical data for double carriage

Linear Unit	Carriage version	Dynamic Ioad capacity	*	Dynamic moment		* For	ces	Max. peri	missible loads Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz[N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
CTJ 145	S2	68400	3000	34,2 × A	34,2 × A	17870	30640	1350	15,3 × A	8,9 × A
C13 143	L2	136800	6000	68,4 × A	68,4 × A	35700	61200	2400	30,6 × A	17,8 × A

^{*}A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

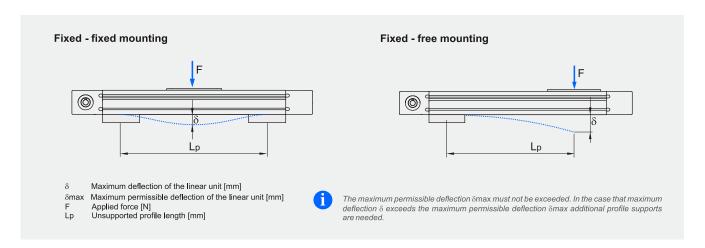
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Be l t width	Max. force transmited by belt	Specific spring constant C _{spec}	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s²]
CTJ 145 S	6	22.6	1,48 × nc	165	52,52	AT 5	70	1280	4200000	70
CTJ 145 L	6	33,6	1,50 × nc	100	52,52	AT 5	70	1200	1360000	70

^{*}The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

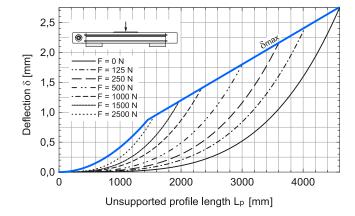
 $^{{}^{**}}$ For minimum stroke below the stated value in the table above please contact us.

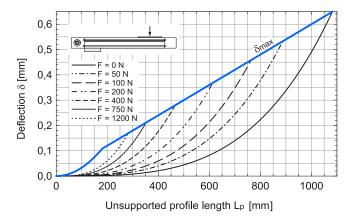
^{**}For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

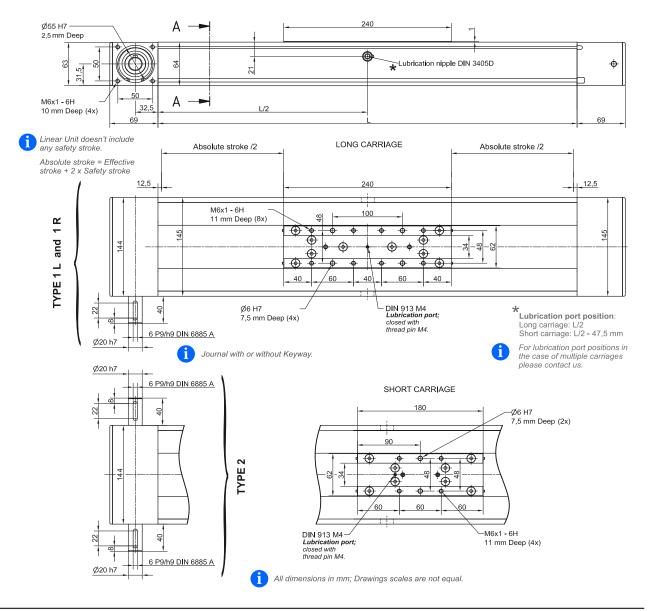

Linear Unit	Mass of linear unit	Mass moment of inertia		noment of ertia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]
CTJ 145 S	7,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 1,35 × (nc - 1)	145 + 0,0330 × (Abs. stroke + (nc - 1) × A) + 93,1 × (nc - 1)	78.9	707.6
CTJ 145 L	8,8 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 2,25 × (nc - 1)	208 + 0,0330 × (Abs. stroke + (nc - 1) × A) + 155,2 × (nc - 1)	70,9	707,0

^{*}Absolute stroke [mm]

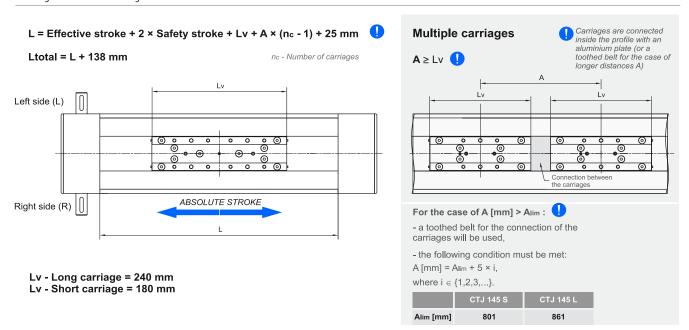


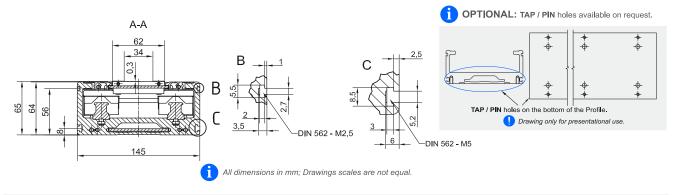

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit

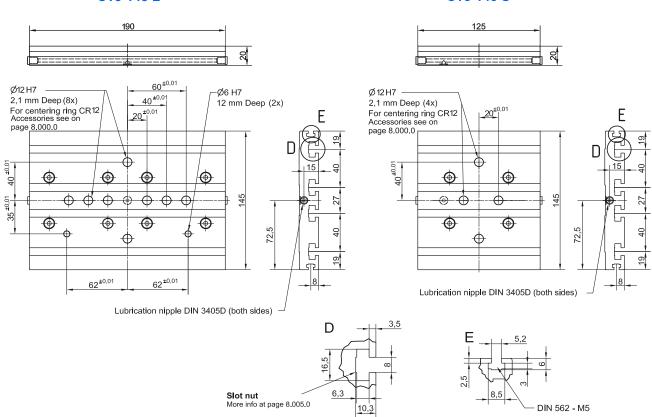


CTJ 145





A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages


Defining of the linear unit length

CONNECTION PLATE

CTJ 145 L CTJ 145 S

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 145 S	125	0,8	103665
CTJ 145 L	190	1,3	103664

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

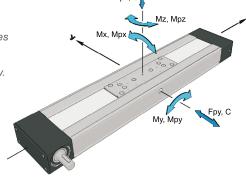
General technical data

Linear Unit	Carriage length	Dynamic load capacity	i	Dynamic moment		Max. p Forces		. permissible loads Moments		Moved mass	Max. Repeatability	* Max. length	* Max. stroke	** Min. stroke	
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	[mm]	Lmax [mm]	[mm]	[mm]
CTJ 200 S	265	49600	3235	450	900	10000	24520	1600	450	308	3,05	÷ 0,08	6000	5710	65
CTJ 200 L	405	99200	6470	8680	8680	20000	50900	3250	4550	1750	5,70	± 0,08	0000	5570	65

^{*}For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

For operating temperature out of the presented range, please contact us.

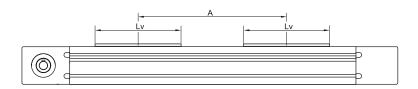


Recommended values of loads

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity

 $E = 70000 \text{ N/mm}^2$



General technical data for double carriage

Linear Unit	Carriage version	Dynamic load capacity	*	Dynamic moment		*	* Max. permissible loads Forces Moments					
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]		Mpx [Nm]	Mpy [Nm]	Mpz [Nm]		
CTJ 200	S2	99200	6470	49,6 × A	49,6 × A	20000	49040	3200	24,5 × A	10,0 × A		
010 200	L2	198400	12940	99,2 × A	99,2 × A	40000	101800	6500	50,9 × A	20,0 × A		

^{*}A - Distance between carriages [mm]. More info on following pages.

Drive and belt data

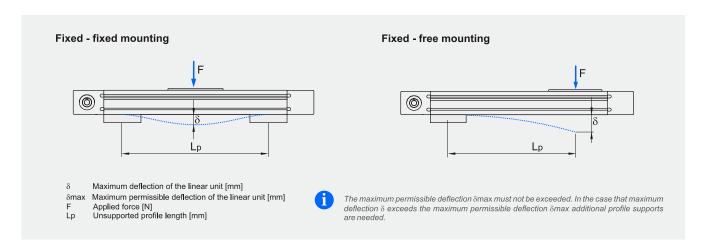
Linear Unit	** Max. travel speed	Max. drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Be l t width	Max. force transmited by belt	Specific spring constant Cspec	** Max. acceleration
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	[m/s ²]
CTJ 200 S	6	102 with keyway	3,5 × nc	250	79,58	AT 10	100	2850	4350000	70
CTJ 200 L	0	113 without keyway	4,5 × nc	250	19,50	A1 10	100	2000	4330000	70

^{*}The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

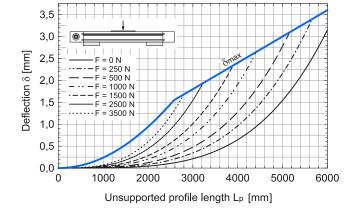
^{***} For minimum stroke below the stated value in the table above please contact us.

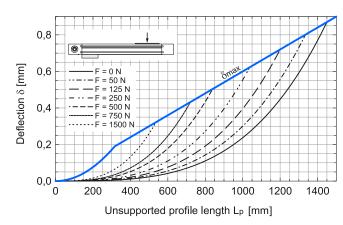
^{**}For travel speed and acceleration over the stated value in the table above please contact us.

Mass and mass moment of inertia

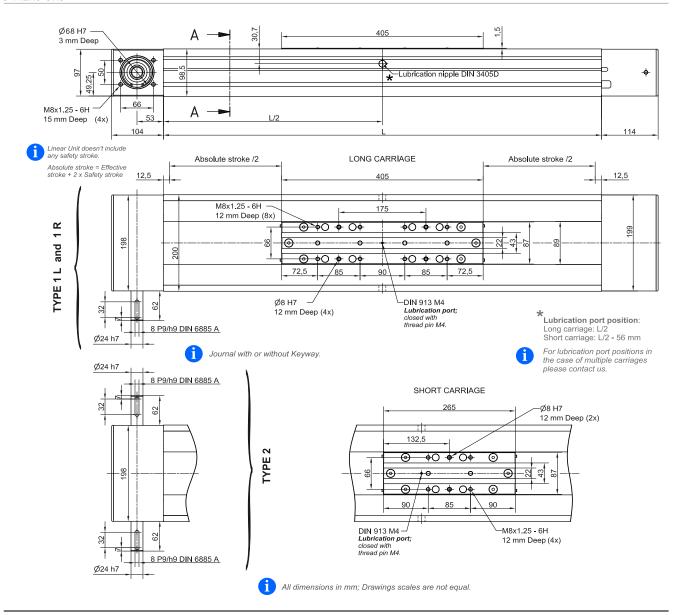

Linear Unit	Mass of linear unit	Mass moment of inertia		noment of ertia
	[kg]	[10 ⁻⁵ kg m ²]	ly [cm ⁴]	lz [cm ⁴]
CTJ 200 S	20,2 + 0,0245 × (Abs. stroke + (nc - 1) × A) + 3,1 × (nc - 1)	778 + 0,1868 × (Abs. stroke + (nc - 1) × A) + 482,9 × (nc - 1)	376.4	2744.6
CTJ 200 L	26,2 + 0,0245 × (Abs. stroke + (nc - 1) × A) + 5,7 × (nc - 1)	1210 + 0,1868 × (Abs. stroke + (nc - 1) × A) + 902,4 × (nc - 1)	370,4	2144,0

^{*}Absolute stroke [mm]

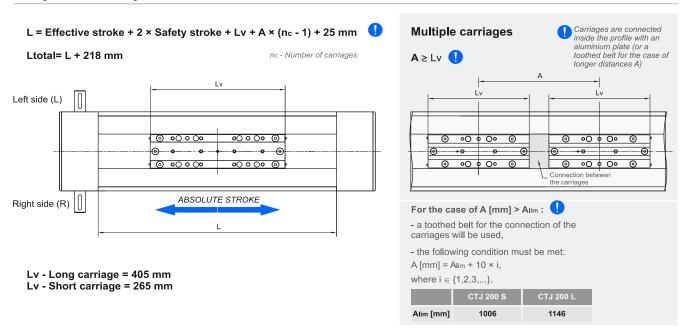


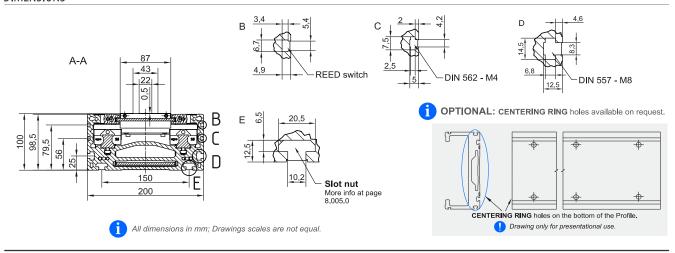

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit

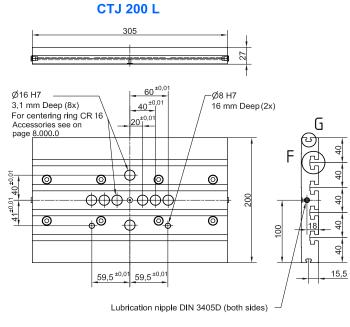


CTJ 200

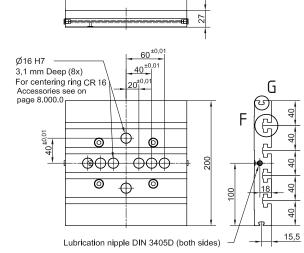


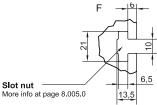


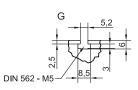
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

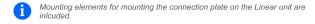


Defining of the linear unit length






CONNECTION PLATE


CTJ 200 S

Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 200 S	190	2,3	103667
CTJ 200 L	305	3,7	103666

Mounting the drive

- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

CHARACTERISTICS

The CTV series describes Linear Units with a precision ball screw drive and two parallel, integrated, Zerobacklash rail guides. Compact dimensions allow high performance features such as, high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated, Zerobacklash rail guide systems, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

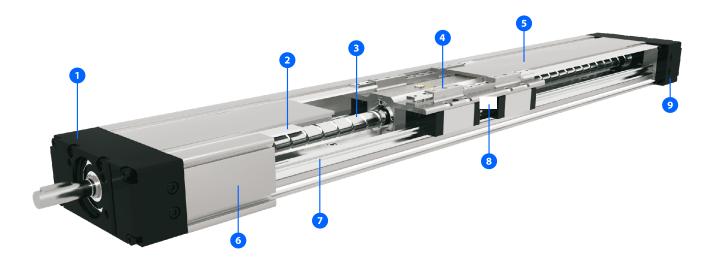
In the Linear Units CTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.

Two parallel circulating antistatic polyurethane sealing strips and an aluminum cover are ensuring to protect all the parts in the profile from dust and other contaminantions.

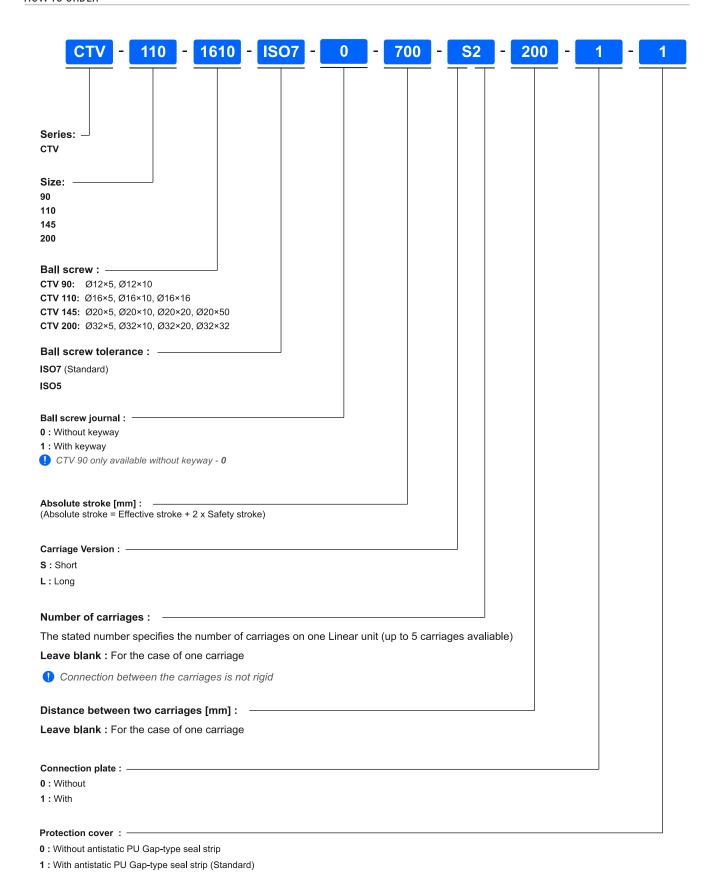
Different carriage lengths with lubrication port allows for easy re-lubrication of the ball screw and Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



The aluminium profiles are manufactured according to the medium EN 12020-2 standard


Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

STRUCTURAL DESIGN

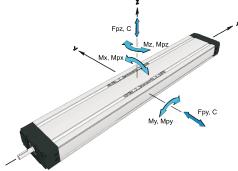
- 1 Drive block with floating bearing
- 2 Gap-type seal of antistatic PU strip (recirculating)
 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- **5 -** Aluminum cover
- 6 Aluminium profile-Hard anodized
- 7 Two integrated Linear Ball Guideways
- 8 Central lubrication port; both sides
- 9 End block with fixed bearing

HOW TO ORDER

General technical data

Linear Unit	Carriage Iength	Dynamic Ioad capacity	i Dyn	amic mom	ent	Foi	Max.pe	rmissib l I	e Ioads Momer	nts	Moved mass	* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 90 S	35	4620	125	17	34	2000	4540	125	17	34	0,3	750	665
CTV 90 L	100	9240	250	300	300	3990	9090	250	297	130	0,5	750	600

^{*}For lengths / stroke over the stated value in the table above please contact us.

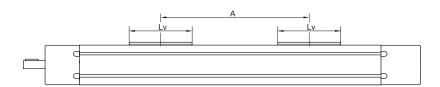

Values for max. stroke are not valid for multiple carriages
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity

 $E = 70000 \text{ N} / \text{mm}^2$

Operating conditions	
Operating temp.	0°C ~ +60°C
Duty cycle	100%


For operating temperature out of the presented range, please contact us.

General technical data for double carriage

Linear	Carriage	Dynamic	*	* Dynamic moment		*		Max. permissible loads			
Unit	version	load capacity			Foi	rces	Moments				
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	
CTV 90	S2	9240	250	4,6 × A	4,6 × A	3990	9090	250	4,5 × A	2,0 × A	
C1V 90	L2	18480	500	9,2 × A	9,2 × A	7980	18170	500	9,0 × A	4,0 × A	

 $^{^{}f *}$ A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

	Linear Unit	Ball screw	Max. rotational	1 Max. travel speed	No load	d torque	Lead constant	3 Max. repe preci	eteability sion		Max. Axial load	Max. drive torque	4 Min. stroke	1 Max. accele-
1			speed		Carriage: S	Carriage: L		[m	ım]	BS				ration
		[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	CTV 90	12 × 5	5800	0,49	0,08 × nc	0,10 × nc	5	± 0,02	± 0,01	5000	5000	4,4 without Keyway	30	20

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

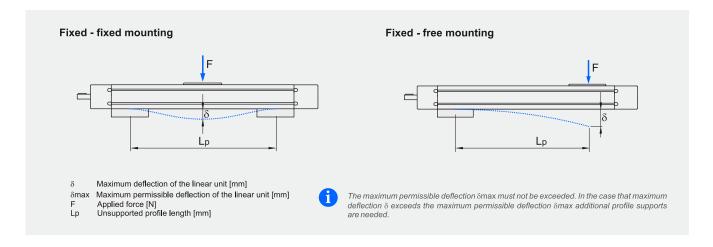
² The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

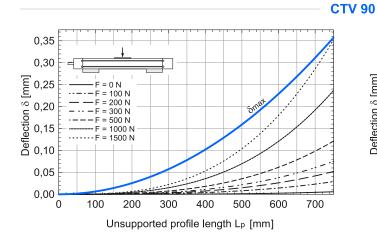
³ For the ball nut with the preload of 2% please contact us

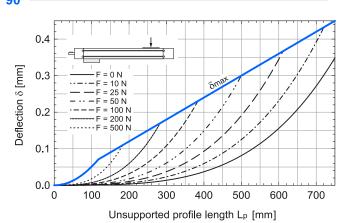
⁴ For minimum stroke below the stated value in the table above please contact us.

Mass and mass moment of inertia

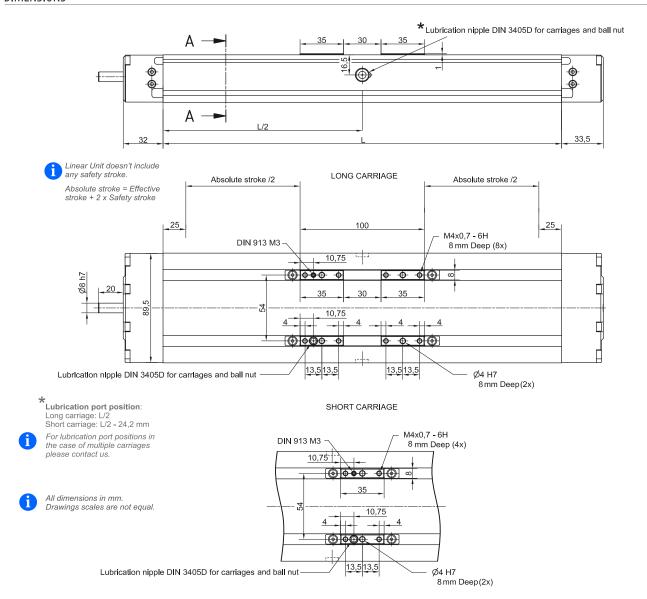
Linear unit	Mass of linear unit Planar moment o		ent of inertia
	[kg]	ly [cm ⁴]	lz [cm ⁴]
CTV 90 S	1,6 + 0,006 × (Abs. stroke + (nc - 1) × A) + 0,30 × (nc - 1)	13,6 102,6	
CTV 90 L	2,2 + 0,006 × (Abs. stroke + (nc - 1) × A) + 0,50 × (nc - 1)		

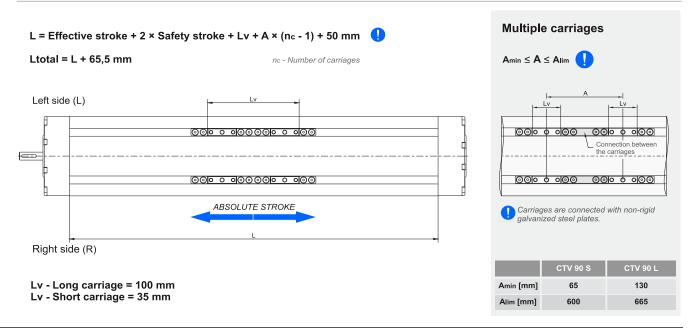

Linear unit	Ball screw	Mass moment of inertia	
	[d×l]	$[10^{-5}\mathrm{kg}\mathrm{m}^{2}]$	
CTV 90 S	12 × 5	0,32 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,02 × (nc - 1)	
	12 × 10	0,38 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,08 × (nc - 1)	
CTV 90 L	12 × 5	0,43 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	
	12 × 10	0,53 + 0,002 × (Abs. stroke + (nc - 1) × A) + 0,13 × (nc - 1)	

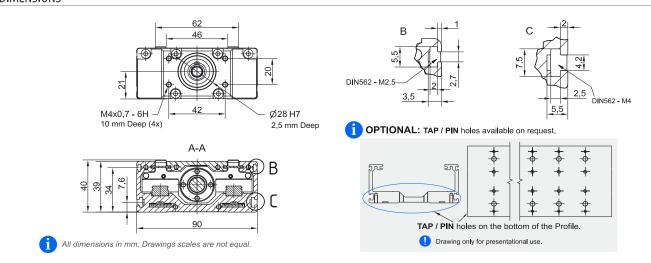

^{*}Absolute stroke [mm]



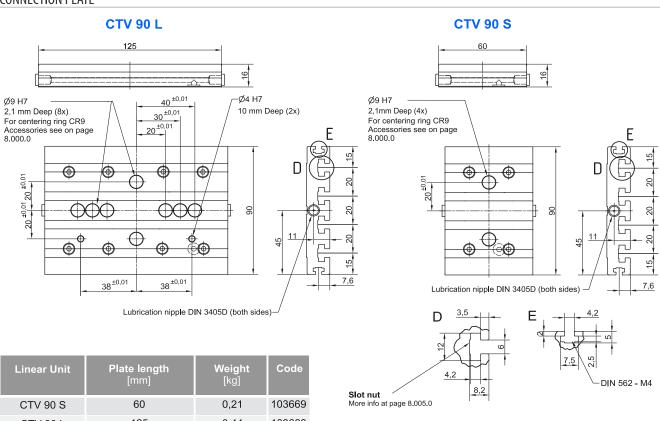
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Deflection of the linear unit





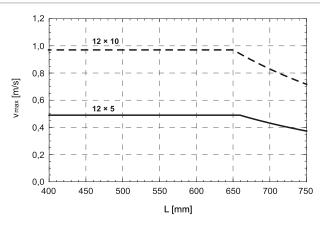
A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages



Defining of the linear unit length

CONNECTION PLATE

0,44 103668 CTV 90 L 125


Mounting elements for mounting the connection plate on the Linear

Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

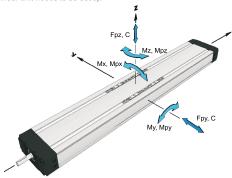
Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

General technical data

Linear	Carriage	i Dynamic	Dynamic moment			Max. permissible loads					Moved	* Max.	* Max.
Unit	length	Ioad capacity				Fo	rces		Momer	its	mass	length	stroke
			Mx .	My .	. Mz	Fpy	Fpz	Мрх	Мру	Mpz			
	Lv [mm]	C[N]	[Nm]	[Nm]	[Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]	[kg]	Lmax [mm]	[mm]
CTV 110 S	39	19800	650	118	235	4670	9390	310	90	90	0,63	4500	1410
CTV 110 L	124	39600	1305	1680	1680	13080	18800	620	800	550	1,36	1500	1325

 f^* For lengths / stroke over the stated value in the table above please contact us.

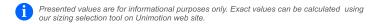

Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

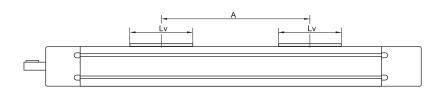
Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

Modulus of elasticity

 $E = 70000 \text{ N} / \text{mm}^2$


Operating conditions	
Operating temp.	0°C ~ +60°C
Duty cycle	100%


For operating temperature out of the presented range, please contact us.

General technical data for double carriage

Linear Carriage		Dynamic	* Dynamic moment				* Max. permissible loads					
Unit	version	load capacity				For	ces		Moments			
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]		
CTV 110	S2	39600	1300	19,8 × A	19,8 × A	12940	18790	620	9,4 × A	6,5 × A		
CIVIII	L2	79200	2600	39,6 × A	39,6 × A	26100	37600	1240	18,8 × A	13,0 × A		

^{*}A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	Max. rotational	1 Max. travel speed	No load	d torque	Lead constant	3 Max. repe preci		Dynamic load capacity	Max. Axial load	Max. drive torque	Min. stroke	1 Max. accele-
		speed		Carriage: S	Carriage: L		[m	m]	BS				ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
CTV 110	16 × 5	4200	0,35	0,17 × nc	0,20 × nc	5	± 0,02	<u>+</u> 0,01	13150	8700	5,5 with Keyway 7,7 without Keyway	40	20
CIVIII	16 × 10	4200	0,70	0,18 × nc	0,21 × nc	10	± 0,02	<u>+</u> 0,01	11550	6730	5,5 with Keyway	40	20
	16 × 16		1,12	0,23 × nc	0,26 × nc	16	± 0,02	<u>+</u> 0,01	8170	4200	11,9 without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

² The stated values are for strokes (and distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation. nc - Number of carriages

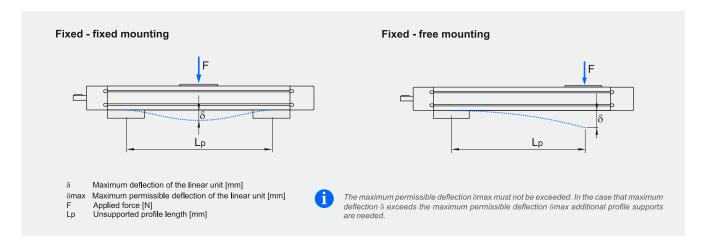
³ For the ball nut with the preload of 2% please contact us

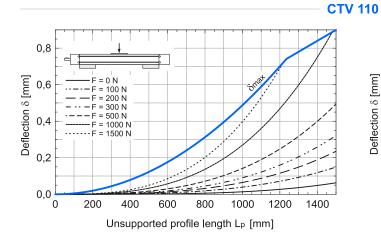
 $^{^{}f 4}$ For minimum stroke below the stated value in the table above please contact us.

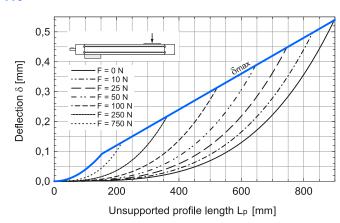
Mass and mass moment of inertia

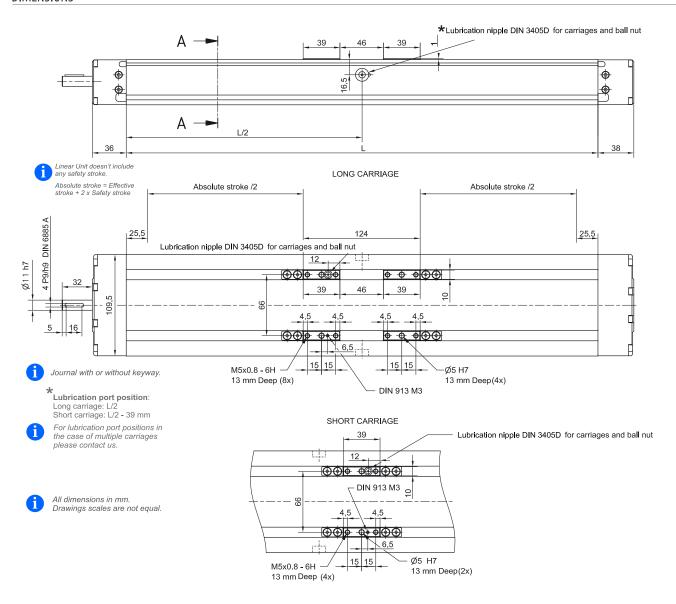
Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm ⁴]	Iz [cm ⁴]
CTV 110 S	3,3 + 0,008 × (Abs. stroke + (nc - 1) × A) + 0,63 × (nc - 1)	29,1	196,0
CTV 110 L	4,6 + 0,008 × (Abs. stroke + (nc - 1) × A) + 1,36 × (nc - 1)	29,1	196,0

Linear unit	Ball screw	Mass moment of inertia
	[d×l]	[10 ⁻⁵ kg m ²]
	16 × 5	$0.70 + 0.005 \times (Abs. stroke + (nc - 1) \times A) + 0.04 \times (nc - 1)$
CTV 110 S	16 × 10	0,82 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,16 × (nc - 1)
	16 × 16	1,07 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,41 × (nc - 1)
	16 × 5	1,19 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)
CTV 110 L	16 × 10	1,45 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,34 × (nc - 1)
	16 × 16	1,99 + 0,005 × (Abs. stroke + (nc - 1) × A) + 0,88 × (nc - 1)

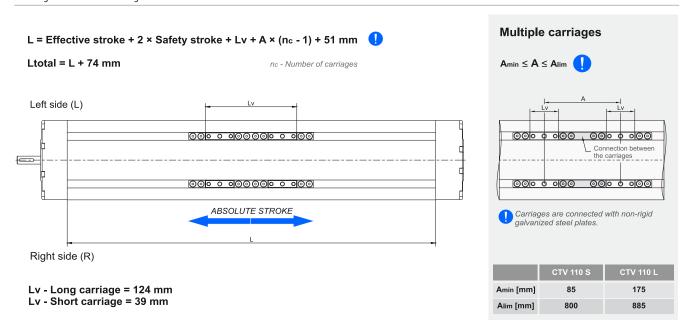

^{*}Absolute stroke [mm]

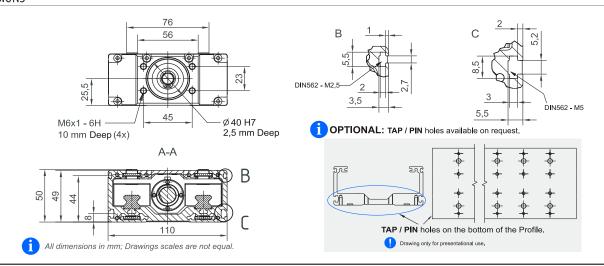

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

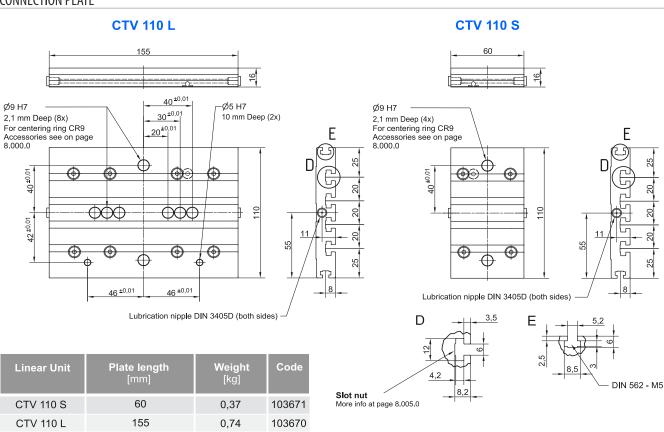


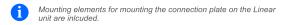

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

Deflection of the linear unit

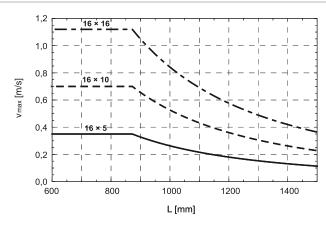







Defining of the linear unit length

CONNECTION PLATE



Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)
 - Available on request.

Maximum travel speed as a function of the profile length (Vmax = L curves)

General technical data

Linear Unit	Carriage length	i Dynamic load capacity	Dynamic moment			Max. permissible loads Forces Moments				ite	Moved mass	* Max. Jength	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 145 S	49	34200	1500	260	520	8930	15320	674	260	180	1,19	4000	1690
CTV 145 L	149	68400	3005	3420	3420	17870	30680	1350	1700	893	2,61	1800	1590

^{*}For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

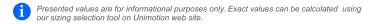
Duty cycle Fpz, C

Operating conditions Operating temp. 0°C ~ +60°C 100%

For operating temperature out of the presented range, please contact us.

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)


Modulus of elasticity

 $E = 70000 \text{ N} / \text{mm}^2$

General technical data for double carriage

Linear Carriage		Dynamic	* Dynamic moment				* Max. permissible loads				
Unit	version	load capacity					Forces		Moments		
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy[N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]	
CTV 145	S2	68400	3000	34,2 × A	34,2 × A	17870	30640	1350	15,3 × A	8,9 × A	
CTV 145	L2	136800	6000	68,4 × A	68,4 × A	35700	61300	2700	30,6 × A	17,8 × A	

^{*}A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	Max. rotational speed	Max. travel speed		d torque Carriage:	Lead constant	preci	eteability ision ım]	Dynamic load capacity BS	Max. Axial load	Max. drive torque	Min. stroke	Max. accele- ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	20 × 5	2000	0,28	0,30 × nc	0,35 × nc	5	± 0,02	± 0,01	14800	14800	11,9 with Keyway 13,0 without Keyway		
CTV 145	20 × 10	3300	0,55	0,32 × nc	0,37 × nc	10	± 0,02	± 0,01	15900	13850	11,9 with Keyway	55	20
	20 × 20		1,10	0,45 × nc	0,50 × nc	20	± 0,02	± 0,01	16250	6930	with Keyway 24,5 without Keyway		
	20 × 50	3000	2,50	0,80 × nc	0,85 × nc	50	± 0,02	± 0,01	13000	2770	without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.
² The stated values are for strokes (and distances between the carriages A) up to 500mm.

No Load Torque value increases with stroke (and with A) elongation nc - Number of carriages

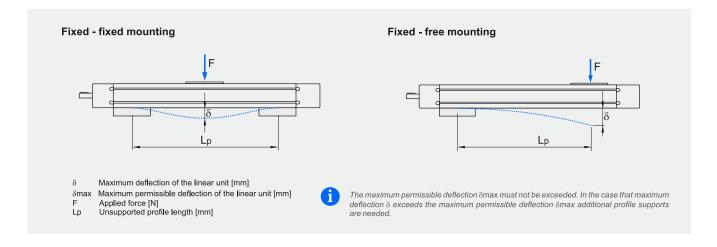
 $^{^{\}rm 3}$ For the ball nut with the preload of 2% please contact us

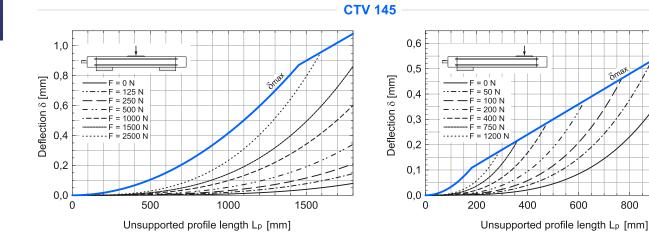
⁴ For minimum stroke below the stated value in the table above please contact us.

Mass and mass moment of inertia

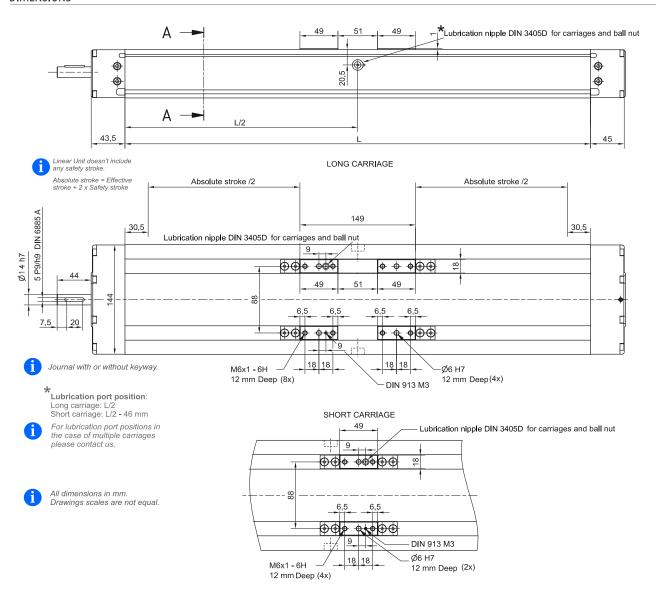
Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm ⁴]	lz [cm ⁴]
CTV 145 S	5,7 + 0,015 × (Abs. stroke + (nc - 1) × A) + 1,19 × (nc - 1)	85,3	682,3
CTV 145 L	8,4 + 0,015 × (Abs. stroke + (nc - 1) × A) + 2,61 × (nc - 1)	65,5	002,3

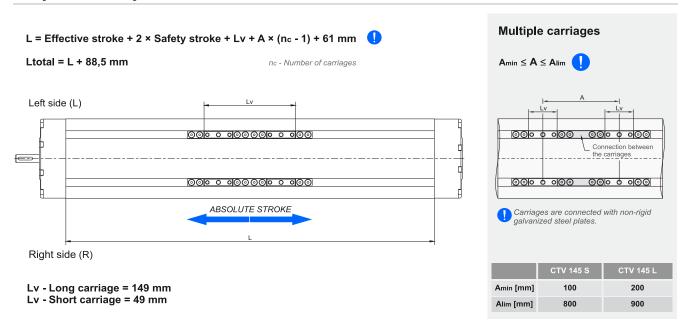
Linear unit	Ball screw	Mass moment of inertia
	[d×l]	$[10^{-5}\mathrm{kg}\mathrm{m}^{2}]$
	20 × 5	3,04 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,08 × (nc - 1)
OTV 445 C	20 × 10	3,27 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,30 × (nc - 1)
CTV 145 S	20 × 20	4,17 + 0,013 × (Abs. stroke + (nc - 1) × A) + 1,21 × (nc - 1)
	20 × 50	10,50 + 0,013 × (Abs. stroke + (nc - 1) × A) + 7,54 × (nc - 1)
	20 × 5	$4,43 + 0,013 \times (Abs. stroke + (nc - 1) \times A) + 0,17 \times (nc - 1)$
CTV 145 L	20 × 10	4,92 + 0,013 × (Abs. stroke + (nc - 1) × A) + 0,66 × (nc - 1)
CTV 145 L	20 × 20	6,91 + 0,013 × (Abs. stroke + (nc - 1) × A) + 2,64 × (nc - 1)
	20 × 50	20,79 + 0,013 × (Abs. stroke + (nc - 1) × A) + 16,53 × (nc - 1)

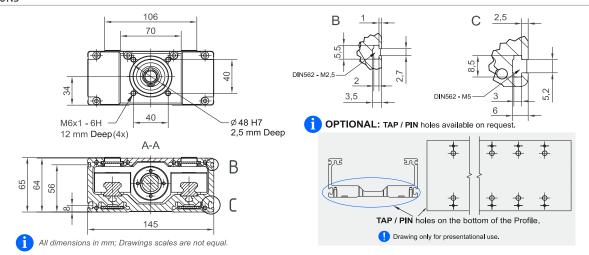

^{*}Absolute stroke [mm]


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

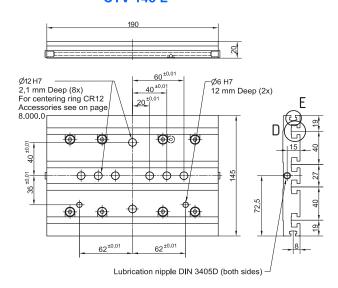
Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

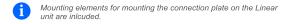

Deflection of the linear unit



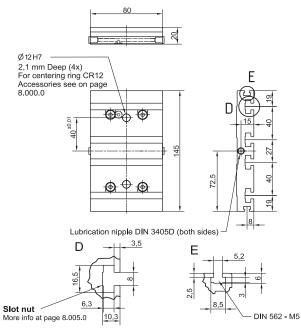

800

1000


Defining of the linear unit length

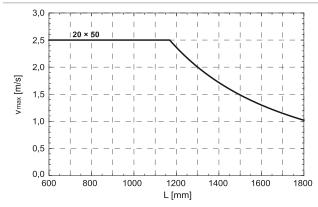


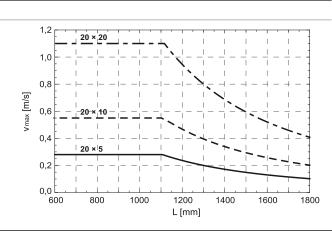
CONNECTION PLATE



Linear Unit	Plate length [mm]	Weight [kg]	Code
CTV 145 S	80	0,78	103673
CTV 145 L	190	1,54	103672

CTV 145 S




Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

i Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

General technical data

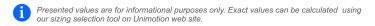
Linear Unit	Carriage length	Dynamic load capacity	i Dyr	namic mom	ent	Foi	Max. pe	rmissib l e	e loads Momen	ıts	Moved mass	* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fру [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	[kg]	Lmax [mm]	[mm]
CTV 200 S	80	49600	3220	450	900	10000	24610	1600	450	308	3,11	2200	2000
CTV 200 L	255	99200	6445	8680	8680	20000	51540	3350	4550	1750	6,21	2200	1825

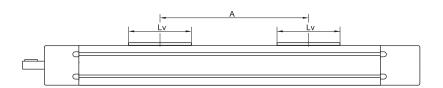
 $^{^{}f *}$ For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages (equation of defining the linear unit length for particular size of the linear unit needs to be used).

Recommended values of loads: All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0) Modulus of elasticity

Operating conditions Operating temp. 0°C ~ +60°C **Duty cycle** 100%


For operating temperature out of the presented range, please contact us.


 $E = 70000 \text{ N} / \text{mm}^2$

Linear	Carriage	Dynamic	*	Dynamic momer	nt	*		Max. perr	nissible loads	
Unit						For	ces		Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Мру [Nm]	Mpz [Nm]
CTV 200	S2	99200	6440	49,6 × A	49,6 × A	20000	49230	3200	24,6 × A	10,0 × A
C1V 200	L2	198400	12890	99,2 × A	99,2 × A	40000	103000	6700	51,5 × A	20,0 × A

^{*}A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	Max. rotational	Max. travel speed	No load	d torque Lead constant		3 Max. repe preci		Dynamic load capacity	Max. Axial load	Max. drive torque	Min. stroke	1 Max. accele-
		speed		Carriage: S	Carriage: L		[m		BS				ration
	[d×l]	[rev / min]	[m/s]	[Nm]	[Nm]	[mm / rev]	ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	32 × 5	2150	0,18	0,60 × nc	0,70 × nc	5	<u>+</u> 0,02	<u>+</u> 0,01	18850	18850	16,7 with Keyway 16,7 without Keyway	65	
CTV 200	32 × 10		0,50	0,70 × nc	0,80 × nc	10	± 0,02	<u>‡</u> 0,01	37000	29600	27,3 with Keyway	03	20
	32 × 20	3000		0,75 × nc	0,85 × nc	20	± 0,02	<u>‡</u> 0,01	22950	14800 52.3			
	32 × 32			0,80 × nc	0,90 × nc	32	± 0,02	<u>†</u> 0,01	15550	9240	without Keyway	70	

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.
² The stated values are for strokes (and distances between the carriages A) up to 500mm.

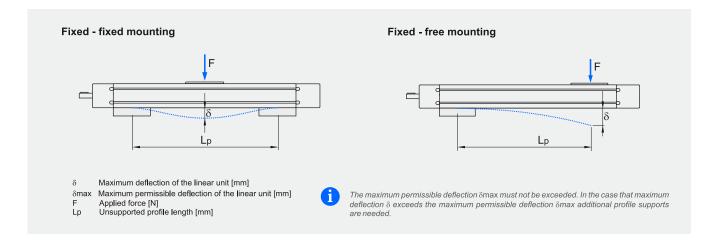
No Load Torque value increases with stroke (and with A) elongation nc - Number of carriages

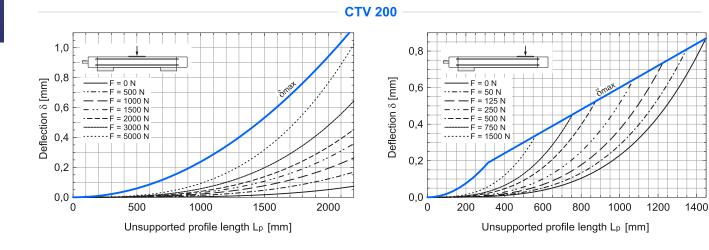
 $^{^{3}% \,\}mathrm{For}$ The ball nut with the preload of 2% please contact us

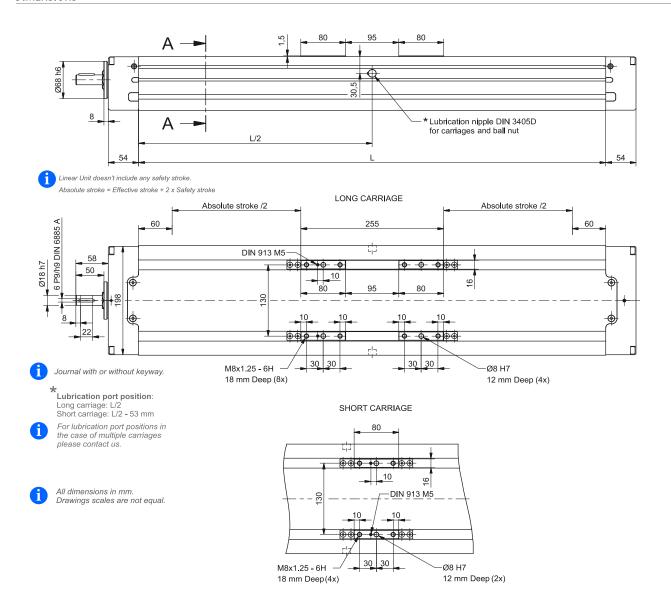
⁴ For minimum stroke below the stated value in the table above please contact us.

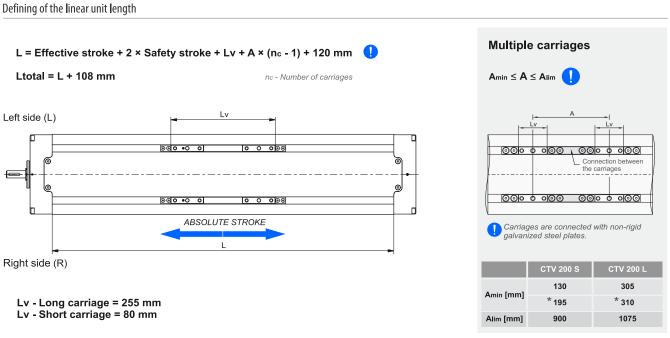
Mass and mass moment of inertia

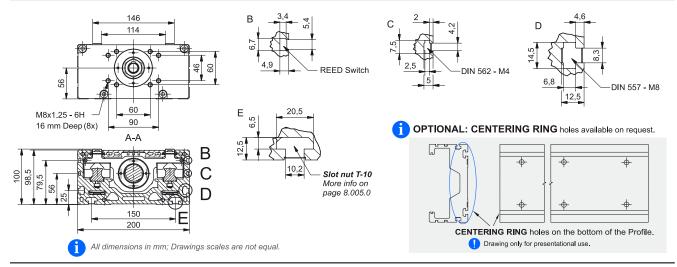
Linear unit	Mass of linear unit	Planar mome	ent of inertia
	[kg]	ly [cm ⁴]	lz [cm ⁴]
CTV 200 S	15,4 + 0,031 × (Abs. stroke + (nc - 1) × A) + 3,11 × (nc - 1)	417.4	3007,3
CTV 200 L	23,8 + 0,031 × (Abs. stroke + (nc - 1) × A) + 6,21 × (nc - 1)	417,4	3007,3

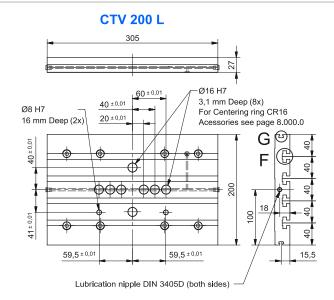

Linear unit	Ball screw	Mass moment of inertia
	[d×l]	$[10^{-5}\mathrm{kg}\mathrm{m}^{2}]$
	32 × 5	21,17 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,20 × (nc - 1)
OT1/ 200 C	32 × 10	21,76 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,79 × (nc - 1)
CTV 200 S	32 × 20	24,12 + 0,069 × (Abs. stroke + (nc - 1) × A) + 3,15 × (nc - 1)
	32 × 32	29,04 + 0,069 × (Abs. stroke + (nc - 1) × A) + 8,07 × (nc - 1)
	32 × 5	33,41 + 0,069 × (Abs. stroke + (nc - 1) × A) + 0,39 × (nc - 1)
CTV 200 L	32 × 10	34,59 + 0,069 × (Abs. stroke + (nc - 1) × A) + 1,57 × (nc - 1)
C1V 200 L	32 × 20	39,31 + 0,069 × (Abs. stroke + (nc - 1) × A) + 6,29 × (nc - 1)
	32 × 32	49,12 + 0,069 × (Abs. stroke + (nc - 1) × A) + 16,11 × (nc - 1)


^{*}Absolute stroke [mm]


Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Deflection of the linear unit

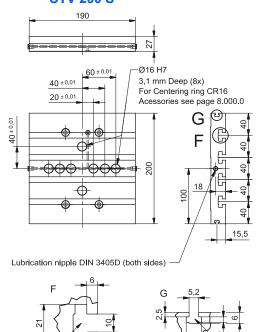


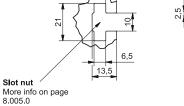

A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

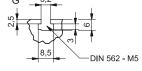
CONNECTION PLATE

Linear Unit Plate length [mm] Weight [kg] Code CTV 200 S 190 2,32 103675 CTV 200 L 305 3,75 103674

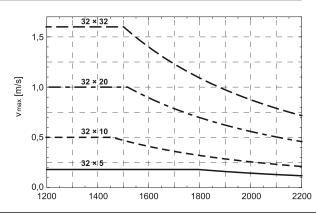
Mounting elements for mounting the connection plate on the Linear unit are inlcuded.


Please consider our advice in our Maintenance- and assembly instructions


Mounting the drive

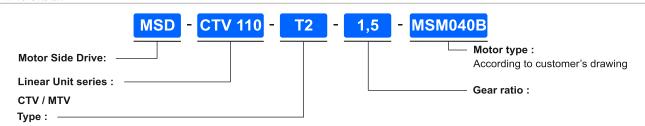

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

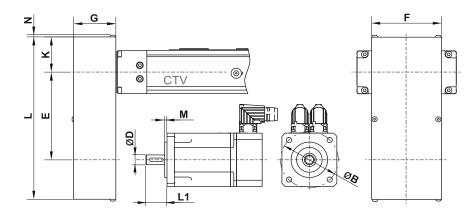

CTV 200 S

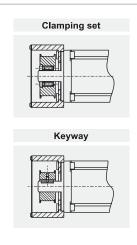

Maximum travel speed as a function of the profile length (Vmax - L curves)

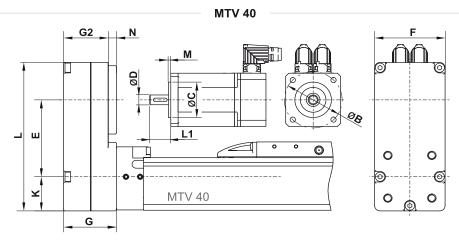
STRUCTURAL DESIGN



- Cover
 Attachment of pulley with clamping set
 Anodized aluminium housing
 Toothed belt
 Belt tensioning system (elongation and frequency of belt span provided with delivery of unit)
 Motor
 Linear unit CTV / MTV






HOW TO ORDER

TECHNICAL DATA AND DIMENSIONS

TECHNICAL DATA AND DIMENSIONS

Technical data

Linear Unit	Туре	Gear	Max. drive	** Max.	Mass moment of	Mass				Mot	or size lim	its [m	m]		
		ratio	torque (linear unit)	radia l l oad on shaft	inertia	***	ØВ	ØС	*М		L1		ØI		
			[Nm]	[N]	[10 ⁻⁶ kg m ²]	[kg]	max	max	max	m Clamping set	in Keyway	max	Clamping set max	Key min	way max
		1	1,3	60	4.6	0,5				Olumping Sec	reyway		8	>8	12
MTV 40	T1	1,5	1,3	60	5,4	0,5	60	36	4		20	32	8	-	-
		1	3	80	45	0,8							19	_	_
MTV 40	T2	1,5	3	80	31	0,7	80	52	4		25	39	10	>10	14
		1,0	2,7	90	75	0,8							19	-	-
CTV 90	T1	1,5	2,7	90	45	0,7	70	-	4		25	39	10	>10	14
CTV 110		1	5	175	70	0,8							19	_	_
MTV 65	T1	1,5	5	175	45	0,8	70	-	4		25	39	10	>10	14
CTV 110		1	9	245	210	1,5				***			22	_	_
MTV 65	T2	1,5	11	235	330	1,5	100	-	4		30	49	19	>19	28
CTV 145		1	13	350	210	1,5							22	_	-
MTV 80	T1	1,5	19	410	330	1,6	100	-	4		30	49	19	>19	28
CTV 145		1	19	410	550	3,0							35	_	_
MTV 80	T2	2	24	375	860	2,9	130	-	4		35	59	19	>19	28
071/000		1	25	500	640	3,8							35	- 13	
CTV 200 MTV 110	T1						130	-	4		35	59		<u>-</u>	
		2	25	400	960	3,6							19	>19	28

(max. drive speed: 3000 1/min; No load torque: approx. 0,5 Nm)

Dimensions

Linear Unit	Type	Gear ratio			Dimens	sions [n	nm]		
		i	E (± 0,5)		F	G	G2	К	N
MTV 40	T1	1	58,5	113	52	39	33	26	6 *
WI 1 V 40		1,5	59	113	52	39	33	20	O
MTV 40	T2	1	65	135	68	42	36	31	8 *
WII V 40	12	1,5	64,5	133	00	42	30	31	O
CTV 90	T1	1	100	179	70	41	_	31	2
01100		1,5	102	173	70	71		01	-
CTV 110	T1	1	100	179	70	41	_	31	2
MTV 65	• •	1,5	112	190	70	41	_	31	2
CTV 110	Т2	1	145	250	90	51	_	43	2
MTV 65	12	1,5	139	250	90	31	-	43	2
CTV 145	T4	1	145	250	90	51		43	2
MTV 80	T1	1,5	180	282	90	51	-	43	2
CTV 145		1	160	007	400	0.4			0.5
MTV 80	T2	2	158	297	120	61	-	56	2,5
CTV 200	T1	1	268	403	120	61		56	2.5
MTV 110		2	267	403	120	61	-	36	2,5

 $^{^{}f *}$ This is a standard value. It could differ depending to the motor dimensions M and L1.

^{*}For a bigger value an additonal adapter plate is used. For the case of MTV 40 a thicker plate may be used.

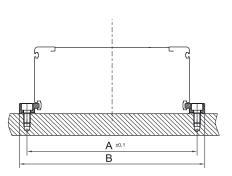
^{**} This is the load which is linearly dependent on the max. drive torque and is generated by the correct pretension of the belt. This load needs to be reduced in accordance with the capabilities of the motor.

 $[\]ensuremath{\mbox{****}}\xspace$ This is an average value. It could differ depending to the motor dimensions.

^{*****}Minimum dimension L1 depends on the size of particular clamping set. Values can be found in the table on page 7.105.0.

TECHNICAL DATA AND DIMENSIONS

Minimum dimension L1 [mm] depends on the motor shafts diameter ØD

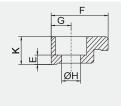

Linear Unit	Туре	Gear ratio													ØD [[mm]												
		i	4	5	6	6,35	7	8	9	9,53	10	11	12	14	15	16	17	18	19	20	22	24	25	25,4	28	30	32	35
MTV 40	T1	1	17	17	17	17	17	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WITV 40		1,5	17	17	17	17	20	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MTV 40	T2	1	-	-	17	17	17	17	18	18	18	18	18	22	22	22	25	25	25	-	-	-	-	-	-	-	-	-
1111111		1,5	-	-	17	17	17	17	18	18	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 90	T1	1	-	-	23	23	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
01100		1,5	-	-	23	23	23	23	24	24	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 110	T1	1	-	-	23	23	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
MTV 65	• •	1,5	-	-	23	23	23	23	24	24	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CTV 110	T2	1	-	-	-	-	-	23	24	24	24	24	24	28	28	28	31	31	31	31	31	-	-	-	-	-	-	-
MTV 65	12	1,5	-	-	-	-	23	23	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
CTV 145	T1	1	-	-	-	-	-	-	24	24	24	24	24	28	28	28	31	31	31	31	31	-	-	-	-	-	-	-
MTV 80	- ' '	1,5	-	-	-	-	-	-	24	24	24	24	24	28	28	28	31	31	31	-	-	-	-	-	-	-	-	-
CTV 145	T2	1	-	-	-	-	-	-	-	-	-	-	29	33	33	33	36	36	36	36	36	40	40	40	40	40	40	43
MTV 80	12	2	-	-	-	-	-	-	29	29	29	29	29	33	33	33	36	36	36	-	-	-	-	-	-	-	-	-
CTV 200	T1	1	-	_	-	-	-	-	-	-	-	-	29	33	33	33	36	36	36	36	36	40	40	40	40	40	40	43
MTV 110	11	2	-	-	-	-	-	-	29	29	29	29	29	33	33	33	36	36	36	-	-	-	-	-	-	-	-	-

Accessories

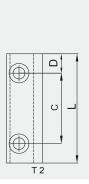
FIXING SYSTEM

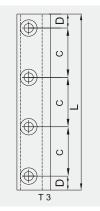
MTJ, MRJ, MTV MTJ ECO

CTV, CTJ

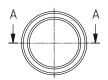


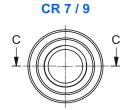
General

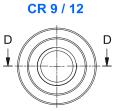

The linear units are mounted by using fixtures which are placed in the slot on the side of the profile.

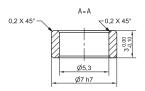


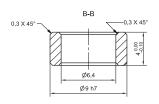
Linear Unit must be mounted by the aluminium profile!

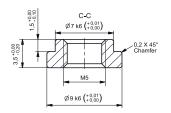

Linear Unit	Туре				Dir	nensio	ns [mr	n]				Screw	Countersink for	Weight	Code
	Õ	Α	В	С	D	L	E	F	G	øН	K			[kg]	
MTJ, MRJ, MTV 40	T 2	50	64,4	40	7,5	55	2,5	15	7,2	5,5	8	M5	DIN 912	0,014	37139
MTJ, MRJ, MTV 65	T 2	78	93	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 80	T 2	93	108	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 110	T 2	130	150	40	10	60	18	30	10	8,5	27	M8	DIN 912	0,082	44375
MTJ ECO 40	T 2	52	66	40	7,5	55	14,5	20	7	5,5	20	M5	DIN 912	0,035	40728
CTV, CTJ 90	T 1	102	112	1	12,5	25	4,5	15	5	4,5	9	M4	DIN 912	0,01	46994
CTV, CTJ 90	T 2	102	112	40	11	62	4,5	15	5	4,5	9	M4	DIN 912	0,02	48636
CTV, CTJ 90	Т3	102	112	20	8,5	77	4,5	15	5	4,5	9	M4	DIN 912	0,025	47163
CTV, CTJ 90	Т3	102	112	25	6	87	4,5	15	5	4,5	9	M4	DIN 912	0,028	55261
CTV, CTJ 90	Т3	102	112	30	8,5	107	4,5	15	5	4,5	9	M4	DIN 912	0,031	55638
CTV, CTJ 110	T 1	126	140	1	12,5	25	3,4	20	7	6,6	10	M6	DIN 912	0,01	48642
CTV, CTJ 110	T 2	126	140	40	11	62	3,4	20	7	6,6	10	M6	DIN 912	0,03	48643
CTV, CTJ 110	Т3	126	140	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 110	Т3	126	140	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 110	Т3	126	140	40	11	142	3,4	20	7	6,6	10	M6	DIN 912	0,056	55260
CTV, CTJ 145	T 1	161	175	1	12,5	25	3,4	20	7	6,6	10	M6	DIN 912	0,01	48642
CTV, CTJ 145	T 2	161	175	40	11	62	3,4	20	7	6,6	10	M6	DIN 912	0,03	48643
CTV, CTJ 145	Т3	161	175	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 145	Т3	161	175	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 145	T 3	161	175	40	11	142	3,4	20	7	6,6	10	M6	DIN 912	0,056	55260
CTV, CTJ 200	T 2	222	240	40	19	78	14,8	29	9	8,5	27,5	M8	DIN 912	0,110	53049
CTV, CTJ 200	T 2	222	240	50	19	88	14,8	29	9	8,5	27,5	M8	DIN 912	0,120	53050
CTV, CTJ 200	T 2	222	240	70	19	108	16,3	29	9	8,5	27,5	M8	DIN 912	0,160	53051

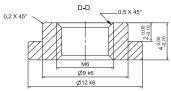

Recommended number of clamping fixtures: For T1 is recommended 6 pcs. per meter on each side, for T2 is recommended 3 pcs. per meter on each side and for T3 is recommended 3 pcs. per meter on each side.

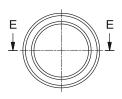

CENTERING RINGS

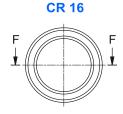

CR 7



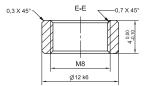

CR 9

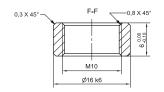






CR 12





Туре	Compatible with	Code
CR 7	MTJ/MRJ/MTJZ/MTV: 40, 65	23332
CR 9	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110	23331
CR 7/9	MTJ, MRJ, MTV, MTJZ, CTV/CTJ: 90, 110	75114
CR 9/12	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110, 145	48885
CR 12	CTV/CTJ: 145	49049

CTV/CTJ: 200

SLOT NUTS

CR 16

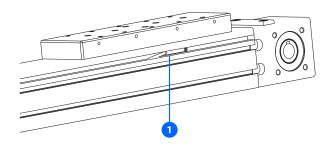
LINEAR UNITS - PROFILE

DIN562

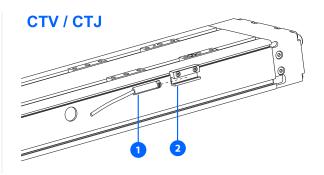
DIN557 Slot Nut

* - deviating CODE

53023

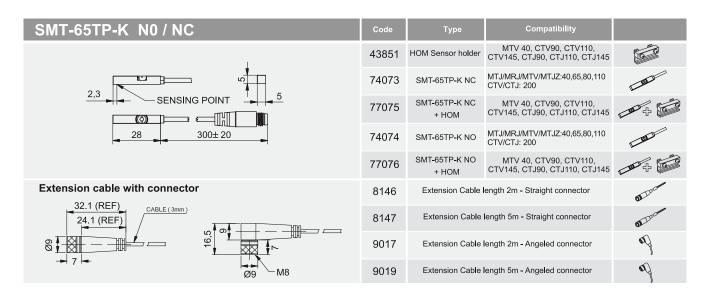

CODE	NUT TYPE	MTJ/MRJ 40	MTV 40	MTJ/MRJ/ MTV/MTJZ 65	MTJ/MRJ/ MTV/MTJZ 80	MTJ/MRJ/MTV MTJZ 110	MTJ 40 ECO			CTV 145 CTJ 145	
41609	DIN562 - M2,5		X					X	X	X	
40682	DIN562 - M4	X -*57017		Х	X			X			X
40768	DIN562 - M5								X	X	
40769	DIN557 - M5			Χ	X						
44451	DIN557 - M8					x					X
5746	Slot Nut M6						X				
5551	Slot Nut T-10-M8										X
5552	Slot Nut T-10-M6										X
5553	Slot Nut T-10-M5										X
5570	Slot Nut T-10-M8 L=90										X

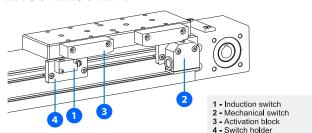
LINEAR UNITS - CONNECTION PLATES

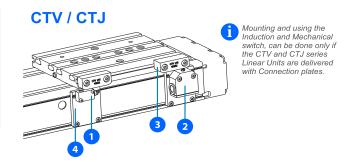

CODE	NUT TYPE	CTV 200 CTJ 200	CODE	NUT TYPE	CTV 145 CTJ 145	CODE	NUT TYPE	CTV 110 CTJ 110	
5551	Slot Nut T-10-M8	X	5704	Slot Nut 8LM4	X	48887	Slot Nut 6LM4	Х	X
5552	Slot Nut T-10-M6	X	5703	Slot Nut 8LM5	X	48888	Slot Nut 6LM5	X	X
5553	Slot Nut T-10-M5	X	5702	Slot Nut 8LM6	X				
5570	Slot Nut T-10-M8 L =90	X	5701	Slot Nut 8LM8	Х				

MAGNETIC FIELD SENSORS

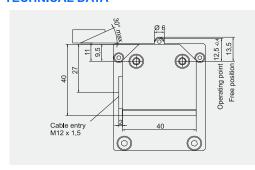
MTJ / MRJ / MTV


- 1 Magnetic field sensor
- 2 Sensor holder


Mounting of Magnetic field sensor on CTV and CTJ series requires a HOM sensor holder.

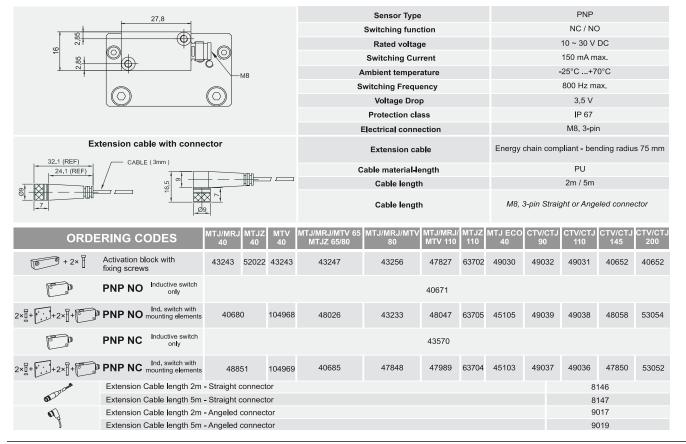

For MTV 40 a HOM sensor holder is also needed. For CTV/CTJ 200 a HOM sensor holder is not needed.

TECHNICAL DATA	SMT-65TP-K NC	SMT-65TP-K NO
Sensor Type	GMR sensor	GMR sensor
Switching function	NC	NO
Output	PNP	PNP
Operating voltage	10 ~ 28 V DC	10 ~ 28 V DC
Switching Current	200 mA max.	200 mA max.
Power rating	5,5 W max.	5,5 W max.
Voltage Drop	1,5 V / 200mA max.	1,5 V / 200 mA max.
Current Consumption	10 mA / 24 V max.	10 mA / 24 V max.
Switching Frequency	1000 Hz	1000 Hz
Ambient temperature	-10 ~ +70°C	-10 ~ +70°C
Shock/Vibration	50 G / 9 G	50 G / 9 G
Protection class	IP 67	IP 67
LED indicator	yellow	Yellow
Electrical connection	M8, 3-pin	M8, 3-pin
Cable material length	PU - 0,3 m	PU - 0,3 m
Extension cable	Energy chain compliant	Energy chain compliant

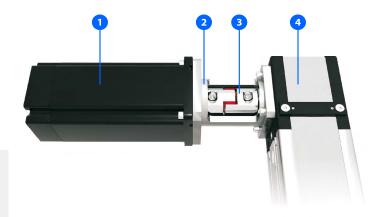

MTJ / MRJ / MTV

MS- Mehanical switch

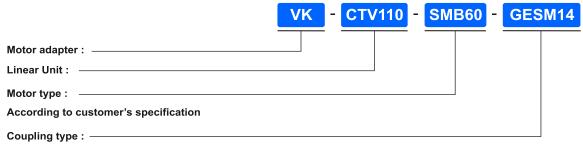
TECHNICAL DATA



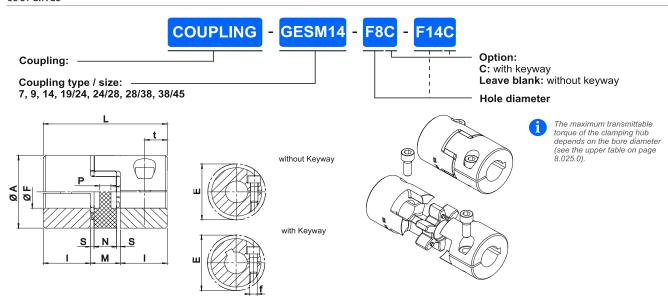
Protection class IEC 60529	IP 67
Ambient temperature	-5°C+80°C
Operating point accuracy	± 0.05 mm
Approach speed max.	45 m/min
Approach speed min.	0,01 m/min
Switching contact	1 changeover
Switching principle	Snap-action
Rated voltage	250 V AC
Switching current, min. at	10 mA
Switching voltage	24 V DC
Cable entry	M12 x 1,5


ORDERI	NG CODES	MTJ/MRJ 40	MTJZ 40	MTV 40	MTJ/MRJ/MTV 65 MTJZ 65/80	MTJ/MRJ/MTV 80	MTJ/MRJ/ MTV 110		MTJ ECO 40	CTV/CTJ 90	CTV/CTJ 110	CTV/CTJ 145	CTV/CTJ 200
+ 2×	Activation block with fixing screws	43243	52022	43243	43247	43256	47827	63702	49030	49032	49031	40652	40652
	Mechanical switch only						47921						
2×2+ + 2×7+	Mechanical switch with mounting elements	406	83	104970	40687	40689	47826	63703	49035	49034	49033	47939	53055

IS-Inductive switch


TECHNICAL DATA

MOTOR ADAPTER WITH COUPLING



- 1 Motor
- 2 Motor adapter
- 3 Coupling
- 4 Linear Unit

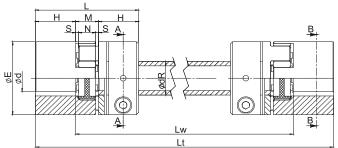
See page 8.020.0 or According to customer's specification

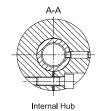
COUPLINGS

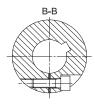
Size	* T _{KN} Nominal [Nm]	*T _{Kmax} [Nm]	Ms [Nm]	W [Kg]	Hub J [Kgm²]	n _{max} [min ⁻¹]	A [mm]	F min [mm]	F max [mm]	f [mm]	L [mm]	l [mm]	M [mm]	N [mm]	S [mm]	P [mm]	t [mm]	E [mm]
7	2	4	0,35	0,003	0,085 x 10	40.000	14	3	7	M2	22	7	8	6	1,0	6	4	15,0
9	5	10	0,75	0,007	0,42 x 10	28.000	20	4	10	M2,5	30	10	10	8	1,0	2	5	23,4
14	12,5	25	1,4	0,018	2,6 x 10	19.000	30	6	16	М3	35	11	13	10	1,5	2	5,5	32,2
19/24	17	34	11	0,071	18,1 x 10	14.000	40	10	20	M6	66	25	16	12	2,0	3,5	12	45,7
24/28	60	120	11	0,156	74,9 x 10	10.600	55	10	32	M6	78	30	18	14	2,0	4	12	56,4
28/38	160	320	25	0,240	163,9 x 10	8.500	65	14	35	M8	90	35	20	15	2,5	5,2	13,5	72,6
38/45	325	650	25	0,440	465,5 x 10	7.100	80	19	45	M8	114	45	24	18	3,0	5,6	16	83,3

^{*}The values of nominal TKN** and max. TKmax** transmissible torque in the upper table are valid for coupling with Keyway!

^{**}for legend see page 8.025.0

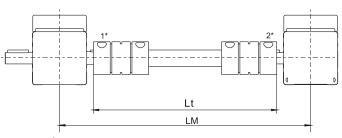

Size	Recommended coupling bore diam. and Transmissible Torque [Nm] - valid for shaft tolerances k6 without Keyway																								
	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø11	Ø12	Ø14	Ø15	Ø16	Ø19	Ø20	Ø22	Ø24	Ø25	Ø28	Ø30	Ø32	Ø35	Ø38	Ø40	Ø42	Ø45
7	0,7	0,8	1,0	1,1																					
9	1,1	1,4	1,7	1,9	2,2	2,5	2,8																		
14			2,5	2,9	3,3	3,7	4,1	4,6	5,0	5,8	6,2	6,6													
19/24							23	25	27	32	34	36	43	45											
24/28							23	25	27	32	34	36	43	45	50	54	57	63							
28/38										58	62	66	79	83	91	100	104	116	124	133	145				
38/45													79	83	91	100	104	116	124	133	145	158	166	174	187

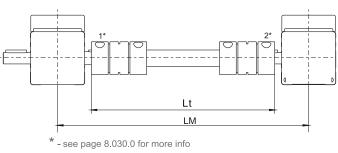

Ms	Screw tightening torque	Nm
W	Weight	Kg
J	Coupling moment of inertia	kgm ²
nmax	Maximum rpm	min ⁻¹
TKN	Coupling nominal torque	Nm
Tkmax	Coupling maximum torque	Nm

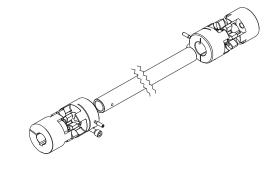

The operating temperature range for the coupling is between -30 and +90°C

SYNCHRONISATION SHAFT OSL

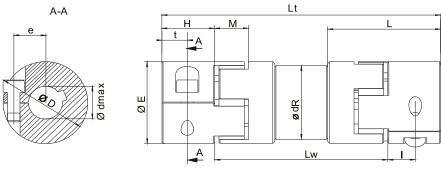
The maximum transmittable torque of the clamping hub depends on the bore diameter (see the upper table on page 8.025.0).

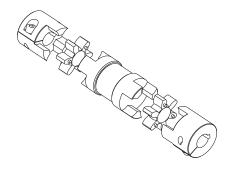





Size	Inte	rnal hub Mт [Nm]	Ст [Nm/rad]	E [mm]	H [mm]	ød min [mm]	ød max [mm]	M [mm]	N [mm]	S [mm]	L [mm]	Lw min [mm]	Lt [mm]	dR x thickness [mm]	Weight [kg]	Moment of inertia [10 ⁻⁶ kg * m ²]
14	1,34	6	59	30	11	4	16	13	10	1,5	35	48	_	14 x 2,0	0,072 + 0,00021 * Lw	10,4 + 0,0076 * Lw
					• •	7				,					0,072 1 0,00021 EW	10,4 1 0,0070 EW
19/24	10	34	314	40	25	6	20	16	12	2	66	82	est	20 x 3,0	0,284 + 0,00044 * Lw	72,4 + 0,0324 * Lw
24/28	10	45	596	55	30	8	28	18	14	2	78	96	redu	25 x 2,5	0,624 + 0,00048 * Lw	300 + 0,0614 * Lw
28/38	25	105	2868	65	35	10	38	20	15	2,5	90	110	on	35 x 5,0	0,960 + 0,00128 * Lw	656 + 0,2954 * Lw
38/45	25	123	4521	80	45	12	45	24	18	3	114	138		40 x 5,0	1,760 + 0,00149 * Lw	1862 + 0,4656 * Lw

Мт	Screw tightening torque Maximum transmissible torque Torsional rigidity per meter	Nm Nm Nm/rad
•.	Toroional rigidity por motor	Tilliilaa

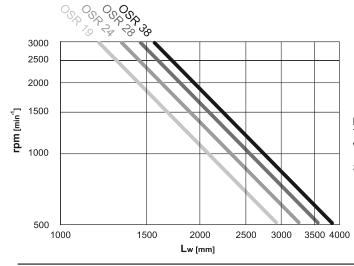




For longer distances Bearing Supports needed. Please contact us.

SYNCHRONISATION SHAFT OSR

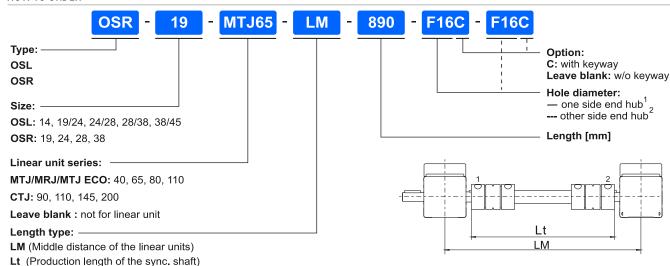
The maximum transmittable torque of the clamping hub depends on the bore diameter (see the upper table on page 8.025.0).


Size	d min [mm]	d max [mm]	Ms [Nm]	Мт [Nm]	C⊤ [Nm/rad]	E [mm]	H [mm]	l [mm]	L [mm]	M [mm]	Lw min [mm]	Lt [mm]	D [mm]	t [mm]	e [mm]	dR [mm]	Weight [kg]	Moment of inertia [10 ⁻⁶ kg * m ²]
19	10	20	10	39	1630	40	25	13	53,5	16	82	#	47	12	15	36	0,30 + 0,00058 * Lw	66,0 + 0,1679 * Lw
24	10	28	10	53	3980	55	30	16	63	18	96	quest	57	14	20,8	45	0,62 + 0,00091 * Lw	242 + 0,4099 * Lw
28	14	35	25	137	7494	65	35	20	67	20	110	on req	73	15	25	55	0,98 + 0,00112 * Lw	572 + 0,7717 * Lw
38	15	45	25	180	14540	80	45	25	83,5	24	138	0	84	20	30	68	1,75 + 0,00140 * Lw	1522 + 1,4975 * Lw

Ms	Screw tightening torque	Nm
Мт	Maximum transmissible torque	Nm
Ст	Torsional rigidity per meter	Nm/rad

INSTALLATION

The overall length Lt is best determined as the distance between shaft ends - length Lw plus 2x dimension H.



SELECTION DIAGRAM

Ideal execution for long distance shat connections. Torque transmission is zero backlash. Designed for lengths up to 4m without bearing support (depending on rotation speed).

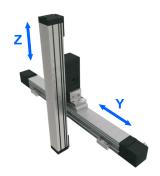
Standard lenghts available till 3m, for longer lengths please contact us.

HOW TO ORDER

8.030.0

X-Y CONNECTION ELEMENTS

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° Y Axis = 0°


X-Axis					Y-Axis				
	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 0	CP M40 0 M65 0			CP M40 0 E40 0	CP M40 0 C90 0			
MTJ, MRJ, MTV 65	CP M65 0 M40 0	CP M65 0 M65 0	CP M65 0 M80 0		CP M65 0 E40 0	CP M65 0 C90 0	CP M65 0 C110 0		
MTJ, MRJ, MTV 80		CP M80 0 M65 0	CP M80 0 M80 0	CP M80 0 M110 0		CP M80 0 C90 0	CP M80 0 C110 0	CP M80 0 C145 0	
MTJ, MRJ 110		CP M110 0 M65 0	CP M110 0 M80 0	CP M110 0 M110 0			CP M110 0 C110 0	CP M110 0 C145 0	CP M110 0 C200 0
MTJ 40 ECO	CP E40 0 M40 0	CP E40 0 M65 0	CP E40 0 M80 0		CP E40 0 E40 0	CP E40 0 C90 0	CP E40 0 C110 0		
CTV, CTJ 90	CP C90 0 M40 0	CP C90 0 M65 0				CP C90 0 C90 0	CP C90 0 C110 0		
CTV, CTJ 110	CP C110 0 M40 0	CP C110 0 M65 0	CP C110 0 M80 0			CP C110 0 C90 0	CP C110 0 C110 0	CP C110 0 C145 0	
CTV, CTJ 145		CP C145 0 M65 0	CP C145 0 M80 0	CP C145 0 M110 0		CP C145 0 C90 0	CP C145 0 C110 0	CP C145 0 C145 0	
CTV, CTJ 200			CP C200 0 M80 0	CP C200 0 M110 0			CP C200 0 C110 0	CP C200 0 C145 0	CP C200 0 C200 0

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° Y Axis = 90°

X-Axis					Y-Axis				
	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 90	CP M40 0 M65 90			CP M40 0 E40 90	CP M40 0 C90 90			
MTJ, MRJ, MTV 65	CP M65 0 M40 90	CP M65 0 M65 90	CP M65 0 M80 90			CP M65 0 C90 90	CP M65 0 C110 90		
MTJ, MRJ, MTV 80		CP M80 0 M65 90	CP M80 0 M80 90	CP M80 0 M110 90		CP M80 0 C90 90	CP M80 0 C110 90	CP M80 0 C145 90	
MTJ, MRJ 110		CP M110 0 M65 90	CP M110 0 M80 90	CP M110 0 M110 90			CP M110 0 C110 90	CP M110 0 C145 90	CP M110 0 C200 90
MTJ 40 ECO	CP E40 0 M40 90	CP E40 0 M65 90	CP E40 0 M80 90		CP E40 0 E40 90	CP E40 0 C90 90	CP E40 0 C110 90		
CTV, CTJ 90	CP C90 0 M40 90	CP C90 0 M65 90				CP C90 0 C90 90			
CTV, CTJ 110	CP C110 0 M40 90	CP C110 0 M65 90	CP C110 0 M80 90			CP C110 0 C90 90	CP C110 0 C110 90		
CTV, CTJ 145		CP C145 0 M65 90	CP C145 0 M80 90	CP C145 0 M110 90		CP C145 0 C90 90	CP C145 0 C110 90	CP C145 0 C145 90	
CTV, CTJ 200			CP C200 0 M80 90	CP C200 0 M110 90			CP C200 0 C110 90	CP C200 0 C145 90	CP C200 0 C200 90

Y- Axis MTJ, MRJ, MTV, MTJ ECO, CTV, CTJ = 0° Z-Axis = 90°

Y-Axis	Z-Axis										
	MTJZ 40	MTJZ 65	MTJZ 80	MTJZ 110	MTV 40	MTV 65	MTV 80	MTV 110	CTV 90	CTV 110	CTV 145
MTJ, MRJ, MTV 40	CP M40 0 Z40				CP M40 0 ZM40						
MTJ, MRJ, MTV 65	CP M65 0 Z40	CP M65 0 Z65			CP M65 0 ZM40	CP M65 0 ZM65					
MTJ, MRJ, MTV 80	CP M80 0 Z40	CP M80 0 Z65	CP M80 0 Z80		CP M80 0 ZM40	CP M80 0 ZM65	CP M80 0 ZM80				
MTJ, MRJ, MTV 110		CP M110 0 Z65	CP M110 0 Z80	CP M110 0 Z110		CP M110 0 ZM65	CP M110 0 ZM80	CP M110 0 ZM110			
MTJ 40 ECO	CP E40 0 Z40										
CTV, CTJ 90	CP C90 0 Z40	CP C90 0 Z65			CP C90 0 ZM40				CP C90 0 ZC90		
CTV, CTJ 110	CP C110 0 Z40	CP C110 0 Z65	CP C110 0 Z80		CP C110 0 ZM40	CP C110 0 ZM65	CP C110 0 ZM80		CP C110 0 ZC90	CP C110 0 ZC110	
CTV, CTJ 145	CP C145 0 Z40	CP C145 0 Z65	CP C145 0 Z80	CP C145 0 Z110		CP C145 0 ZM65	CP C145 0 ZM80	CP C145 0 ZM110	CP C145 0 ZC90	CP C145 0 ZC110	CP C145 0 ZC145
CTV, CTJ 200			CP C200 0 Z80	CP C200 0 Z110			CP C200 0 ZM80	CP C200 0 ZM110		CP C200 0 ZC110	CP C200 0 ZC145

CONNECTION ELEMENTS FOR CUNSTRICTIONS WITH ALU PROFILES

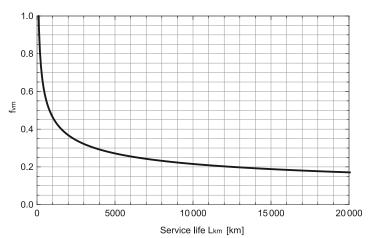
Linear Unit must be mounted by the aluminium profile and not at the end blocks!

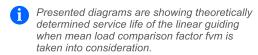
Profilna tehnika Profile technic

For more details about Alu profiles see PROFILE TECHNIC catalogue.

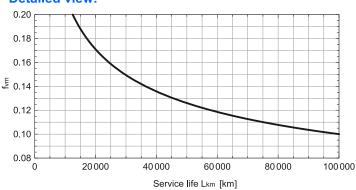
MULTI AXIS SYSTEMS

We offer all neccessary fittings including brackets, clamping fixtures and adapter plates in order to build multi-axis systems. Beside standard elements we supply also custom fixing and connection elements manufactured in our workshop.




Service life / Permissible load factor

Mean load comparison factor fvm as a function of service life Lkm



i Diagrams and equations are valid for:

- MTJ series
- MTV series
- MTJ ECO series
- MTJZ series
- CTJ series
- CTV series

Detailed view:

Load comparison factor fv:

$$f_V = \frac{\left| Fy \right|}{C dyn} \, + \, \frac{\left| Fz \right|}{C dyn} \, + \, \frac{\left| Mx \right|}{Mx \, dyn} \, + \, \frac{\left| My \right|}{My \, dyn} \, + \, \frac{\left| Mz \right|}{Mz \, dyn}$$

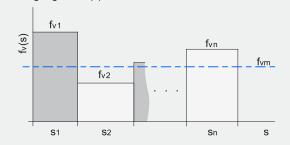
Service life calculation:

$$L_{km} = \left(\frac{1}{f_{vm}}\right)^3 \cdot 10^2$$

Lkm Service life [km]

Mean load comparison factor fvm calculation:

$$fvm = \sqrt[3]{ \frac{fv1^3 \times S1 + fv2^3 \times S2 + ... + fvn^3 \times Sn}{S1 + S2 + ... + Sn}}$$


fvm Mean load comparison factor

fv i i-th load comparison factor of a given loading regime

fv (s), $i \in \{1,2,...,n\}$

si i-th travel path of a given loading regime fv (s), $i \in \{1,2,...,n\}$

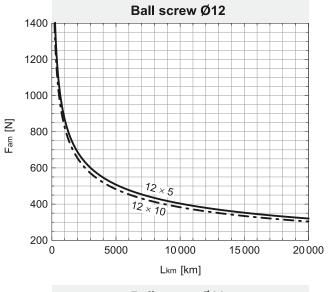
Loading regime fv (s):

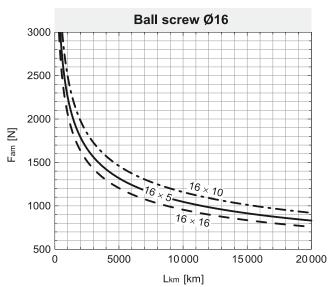
Safety factor fs:

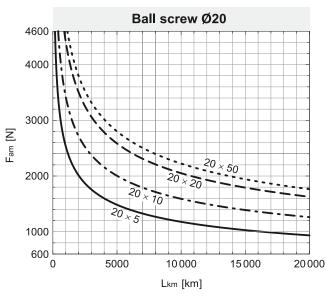
$$f_s = \frac{1}{f_{vm}}$$

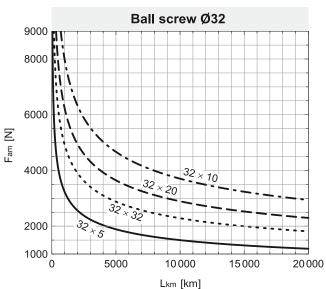
fs Safety factor

The safety factor depends on the application and its requested safety. We recommend a minimum safety factor fs = 5.0


PERMISSIBLE LOAD FACTOR fp - LINEAR GUIDING

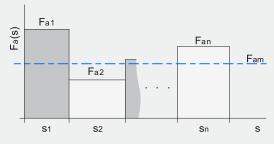

$$f_{p} = \frac{|F_{y}|}{F_{py}} + \frac{|F_{z}|}{F_{pz}} + \frac{|M_{x}|}{M_{px}} + \frac{|M_{y}|}{M_{py}} + \frac{|M_{z}|}{M_{pz}} \le 1$$


fp	Permissible load factor	
Fpy	Max. permissible force in the y axis	N
Fpz	Max. permissible force in the z axis	N
Мрх	Max. permissible moment about the x axis	Nm
Мру	Max. permissible moment about the y axis	Nm
Mpz	Max. permissible moment about the z axis	Nm

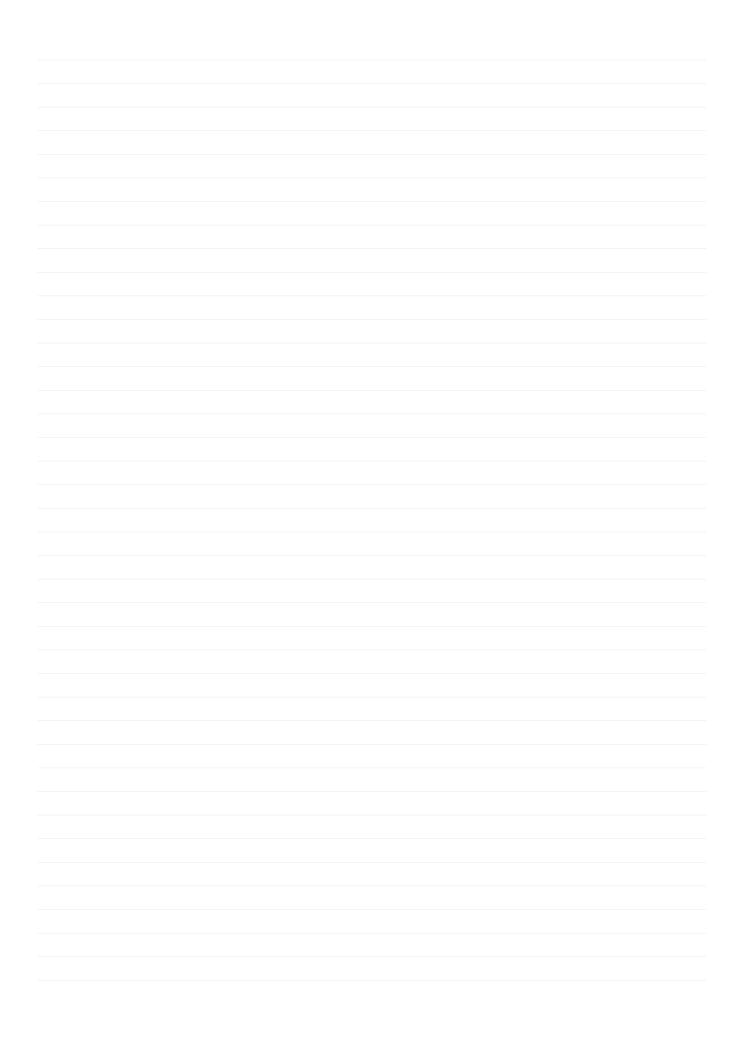

SERVICE LIFE - BALL SCREW

Applied mean axial force Fam as a function of service life Lkm

Mean axial force Fam calculation:


$$Fam = \sqrt[3]{\frac{|Fa1|^3 \times S1 + |Fa2|^3 \times S2 + ... + |Fan|^3 \times Sn}{S1 + S2 + ... + Sn}}$$

Fam Mean axial force


Fa i i-th axial force of a given loading regime Fa (s), i \in {1,2,...,n} si i-th travel path of a given loading regime Fa (s), i \in {1,2,...,n}

Diagrams presented above are showing theoretically determined service life of the ball screw when mean axial force Fam is taken into consideration.

Loading regime Fa (s):

- Diagrams and equations are valid for:
 - MTV series
 - CTV series

UNIMOTION

We cover all major markets. If you wish to contact us, send us an enquiry and we would be happy to assist you.

OFBAAANW	NODTH AMEDICA
GERMANY	NORTH AMERICA

Unimotion GmbH Unimotion North America, Inc.

www.unimotion.de www.unimotionusa.com vertrieb@unimotion.de info@unimotionusa.com

Unimotion: 2020